R语言:microeco:一个用于微生物群落生态学数据挖掘的R包,第六:trans_env class

#环境变量在分析微生物群落结构和组装机制方面是非常有用的。我们首先展示RDA分析(db-RDA和RDA)。

复制代码
> t1 <- trans_env$new(dataset = dataset, add_data = env_data_16S)
Env data is stored in object$data_env ...
> t1$cal_ordination(method = "RDA", use_measure = "bray")
No taxa_level provided; use Genus level automatically !
The original ordination result is stored in object$res_ordination ...
The R2 is stored in object$res_ordination_R2 ...
> t1$cal_ordination_envsquare()
Error: attempt to apply non-function
> t1$cal_ordination_envfit()
Result is stored in object$res_ordination_envfit ...
> t1$trans_ordination(adjust_arrow_length = TRUE, max_perc_env = 10)
The result list is stored in object$res_ordination_trans ...
> t1$plot_ordination(plot_color = "Group")

#Mantel检验可以检验环境变量与距离矩阵之间是否存在显著的相关关系。

复制代码
> t1$cal_mantel(use_measure = "bray")
The result is stored in object$res_mantel ...
> t1$res_mantel
   by_group     Variables mantel type Correlation method Correlation coefficient p.value  p.adjusted Significance
1       All      Latitude mantel test            pearson              0.52010091   0.001 0.001375000           **
2       All     Longitude mantel test            pearson              0.37732601   0.001 0.001375000           **
3       All      Altitude mantel test            pearson              0.22102713   0.001 0.001375000           **
4       All   Temperature mantel test            pearson              0.45198101   0.001 0.001375000           **
5       All Precipitation mantel test            pearson              0.27905384   0.001 0.001375000           **
6       All           TOC mantel test            pearson              0.13000213   0.001 0.001375000           **
7       All           NH4 mantel test            pearson             -0.05538846   0.918 0.918000000             
8       All           NO3 mantel test            pearson              0.06758353   0.044 0.048400000            *
9       All            pH mantel test            pearson              0.40853579   0.001 0.001375000           **
10      All  Conductivity mantel test            pearson              0.26425041   0.001 0.001375000           **
11      All            TN mantel test            pearson              0.13205237   
0.002 0.002444444           **

环境变量与分类群之间的相关性对分析和推断群落结构的影响因素具有重要意义。

在本例中,我们首先进行了差异丰度检验和随机森林分析,以获得重要属。然后利用这些分类群进行相关性分析。

> t2 <- trans_diff$new(dataset = dataset, method = "rf", group = "Group", rf_taxa_level = "Genus")

> t1 <- trans_env$new(dataset = dataset, add_data = env_data_16S[, 4:11])

> t1cal_cor(use_data = "Genus", p_adjust_method = "fdr", other_taxa = t2res_rf$Taxa[1:5])

> t1$plot_cor(pheatmap = FALSE)

图画的有些难看,这是临时跑的,大家有需求的话可以用自己的数据跑一下。没需求就跑着玩,熟悉一下就好。

相关推荐
Biomamba生信基地9 小时前
两天入门R语言,周末开讲
开发语言·r语言·生信
qwy7152292581639 小时前
13-R数据重塑
服务器·数据库·r语言
Bio Coder9 小时前
R语言安装生物信息数据库包
开发语言·数据库·r语言
Tiger Z9 小时前
R 语言科研绘图第 27 期 --- 密度图-分组
开发语言·程序人生·r语言·贴图
是一只努力的小菜鸡啦14 小时前
数据分析和数据挖掘的工作内容
信息可视化·数据挖掘·数据分析
Sodas(填坑中....)18 小时前
SVM对偶问题
人工智能·机器学习·支持向量机·数据挖掘
zhengyawen66619 小时前
深度学习之图像回归(二)
人工智能·数据挖掘·回归
liruiqiang0521 小时前
线性模型 - Logistic 回归
人工智能·机器学习·数据挖掘·回归
zhengyawen66621 小时前
深度学习之图像回归(一)
人工智能·数据挖掘·回归
数据小爬虫@1 天前
爬虫获取的数据能用于哪些数据分析?
爬虫·数据挖掘·数据分析