R语言:microeco:一个用于微生物群落生态学数据挖掘的R包,第六:trans_env class

#环境变量在分析微生物群落结构和组装机制方面是非常有用的。我们首先展示RDA分析(db-RDA和RDA)。

复制代码
> t1 <- trans_env$new(dataset = dataset, add_data = env_data_16S)
Env data is stored in object$data_env ...
> t1$cal_ordination(method = "RDA", use_measure = "bray")
No taxa_level provided; use Genus level automatically !
The original ordination result is stored in object$res_ordination ...
The R2 is stored in object$res_ordination_R2 ...
> t1$cal_ordination_envsquare()
Error: attempt to apply non-function
> t1$cal_ordination_envfit()
Result is stored in object$res_ordination_envfit ...
> t1$trans_ordination(adjust_arrow_length = TRUE, max_perc_env = 10)
The result list is stored in object$res_ordination_trans ...
> t1$plot_ordination(plot_color = "Group")

#Mantel检验可以检验环境变量与距离矩阵之间是否存在显著的相关关系。

复制代码
> t1$cal_mantel(use_measure = "bray")
The result is stored in object$res_mantel ...
> t1$res_mantel
   by_group     Variables mantel type Correlation method Correlation coefficient p.value  p.adjusted Significance
1       All      Latitude mantel test            pearson              0.52010091   0.001 0.001375000           **
2       All     Longitude mantel test            pearson              0.37732601   0.001 0.001375000           **
3       All      Altitude mantel test            pearson              0.22102713   0.001 0.001375000           **
4       All   Temperature mantel test            pearson              0.45198101   0.001 0.001375000           **
5       All Precipitation mantel test            pearson              0.27905384   0.001 0.001375000           **
6       All           TOC mantel test            pearson              0.13000213   0.001 0.001375000           **
7       All           NH4 mantel test            pearson             -0.05538846   0.918 0.918000000             
8       All           NO3 mantel test            pearson              0.06758353   0.044 0.048400000            *
9       All            pH mantel test            pearson              0.40853579   0.001 0.001375000           **
10      All  Conductivity mantel test            pearson              0.26425041   0.001 0.001375000           **
11      All            TN mantel test            pearson              0.13205237   
0.002 0.002444444           **

环境变量与分类群之间的相关性对分析和推断群落结构的影响因素具有重要意义。

在本例中,我们首先进行了差异丰度检验和随机森林分析,以获得重要属。然后利用这些分类群进行相关性分析。

> t2 <- trans_diff$new(dataset = dataset, method = "rf", group = "Group", rf_taxa_level = "Genus")

> t1 <- trans_env$new(dataset = dataset, add_data = env_data_16S[, 4:11])

> t1cal_cor(use_data = "Genus", p_adjust_method = "fdr", other_taxa = t2res_rf$Taxa[1:5])

> t1$plot_cor(pheatmap = FALSE)

图画的有些难看,这是临时跑的,大家有需求的话可以用自己的数据跑一下。没需求就跑着玩,熟悉一下就好。

相关推荐
兮兮能吃能睡9 小时前
R语言众数函数分析
开发语言·r语言
追风少年ii10 小时前
脚本更新--CosMx、Xenium的邻域通讯分析(R版本)
linux·python·r语言·r·单细胞·培训
lzptouch13 小时前
逻辑斯蒂回归(Logistic Regression)算法
算法·数据挖掘·回归
QMY5205201 天前
TikTok 独立 IP 解决方案:独享静态住宅 IP + 环境隔离 + 粘性会话
大数据·jupyter·数据挖掘·数据分析·postman·1024程序员节
Q一件事1 天前
R语言随机森林分析显示R方和P值
开发语言·随机森林·r语言
生物小卡拉1 天前
指定列交集内容合并-Rscript_v1.0
笔记·学习·r语言
猫头虎1 天前
大模型训练中的关键技术与挑战:数据采集、微调与资源优化
人工智能·爬虫·数据挖掘·数据分析·网络爬虫·aigc·1024程序员节
jerryinwuhan1 天前
TableTime:将时序分类重构为表格理解任务,更有效对齐LLM语义空间
重构·分类·数据挖掘
Tiger Z2 天前
《R for Data Science (2e)》免费中文翻译 (第11章) --- Communication(1)
r语言·数据科学·中文翻译
sunbyte2 天前
从零掌握 Pandas:数据分析的黄金钥匙|01:认识Pandas
数据挖掘·数据分析·pandas