R语言:microeco:一个用于微生物群落生态学数据挖掘的R包,第六:trans_env class

#环境变量在分析微生物群落结构和组装机制方面是非常有用的。我们首先展示RDA分析(db-RDA和RDA)。

复制代码
> t1 <- trans_env$new(dataset = dataset, add_data = env_data_16S)
Env data is stored in object$data_env ...
> t1$cal_ordination(method = "RDA", use_measure = "bray")
No taxa_level provided; use Genus level automatically !
The original ordination result is stored in object$res_ordination ...
The R2 is stored in object$res_ordination_R2 ...
> t1$cal_ordination_envsquare()
Error: attempt to apply non-function
> t1$cal_ordination_envfit()
Result is stored in object$res_ordination_envfit ...
> t1$trans_ordination(adjust_arrow_length = TRUE, max_perc_env = 10)
The result list is stored in object$res_ordination_trans ...
> t1$plot_ordination(plot_color = "Group")

#Mantel检验可以检验环境变量与距离矩阵之间是否存在显著的相关关系。

复制代码
> t1$cal_mantel(use_measure = "bray")
The result is stored in object$res_mantel ...
> t1$res_mantel
   by_group     Variables mantel type Correlation method Correlation coefficient p.value  p.adjusted Significance
1       All      Latitude mantel test            pearson              0.52010091   0.001 0.001375000           **
2       All     Longitude mantel test            pearson              0.37732601   0.001 0.001375000           **
3       All      Altitude mantel test            pearson              0.22102713   0.001 0.001375000           **
4       All   Temperature mantel test            pearson              0.45198101   0.001 0.001375000           **
5       All Precipitation mantel test            pearson              0.27905384   0.001 0.001375000           **
6       All           TOC mantel test            pearson              0.13000213   0.001 0.001375000           **
7       All           NH4 mantel test            pearson             -0.05538846   0.918 0.918000000             
8       All           NO3 mantel test            pearson              0.06758353   0.044 0.048400000            *
9       All            pH mantel test            pearson              0.40853579   0.001 0.001375000           **
10      All  Conductivity mantel test            pearson              0.26425041   0.001 0.001375000           **
11      All            TN mantel test            pearson              0.13205237   
0.002 0.002444444           **

环境变量与分类群之间的相关性对分析和推断群落结构的影响因素具有重要意义。

在本例中,我们首先进行了差异丰度检验和随机森林分析,以获得重要属。然后利用这些分类群进行相关性分析。

> t2 <- trans_diff$new(dataset = dataset, method = "rf", group = "Group", rf_taxa_level = "Genus")

> t1 <- trans_env$new(dataset = dataset, add_data = env_data_16S[, 4:11])

> t1cal_cor(use_data = "Genus", p_adjust_method = "fdr", other_taxa = t2res_rf$Taxa[1:5])

> t1$plot_cor(pheatmap = FALSE)

图画的有些难看,这是临时跑的,大家有需求的话可以用自己的数据跑一下。没需求就跑着玩,熟悉一下就好。

相关推荐
大千AI助手20 分钟前
Huber损失函数:稳健回归的智慧之选
人工智能·数据挖掘·回归·损失函数·mse·mae·huber损失函数
kesteler3 小时前
R-切割数据
开发语言·r语言
茗创科技5 小时前
Annals of Neurology | EEG‘藏宝图’:用于脑电分类、聚类与预测的语义化低维流形
分类·数据挖掘·聚类
渡我白衣5 小时前
《未来的 AI 操作系统(四)——AgentOS 的内核设计:调度、记忆与自我反思机制》
人工智能·深度学习·机器学习·语言模型·数据挖掘·人机交互·语音识别
番石榴AI18 小时前
自己动手做一款ChatExcel数据分析系统,智能分析 Excel 数据
人工智能·python·数据挖掘·excel
hhhLLyi1 天前
营销人职业成长路径:从执行到战略的能力进阶与知识体系构建
信息可视化·数据挖掘·数据分析
编码浪子1 天前
对LlamaFactory的一点见解
人工智能·机器学习·数据挖掘
bmcyzs2 天前
【展厅多媒体】触摸查询一体机实现数据可视化
经验分享·科技·信息可视化·数据挖掘·数据分析·设计规范
Dev7z2 天前
舌苔舌象分类图像数据集
人工智能·分类·数据挖掘
CoookeCola2 天前
MovieNet(A holistic dataset for movie understanding) :面向电影理解的多模态综合数据集与工具链
数据仓库·人工智能·目标检测·计算机视觉·数据挖掘