机器学习 - 预测训练模型

接着上篇博客机器学习-训练模型做进一步说明。

There are three things to make predictions (also called performing inference) with a PyTorch model:

  1. Set the model in evaluation mode (model.eval())
  2. Make the predictions using the inference mode context manager (with torch.inference_mode(): ...)
  3. All predictions should be made with objects on the same device (e.g. data and model on GPU only or data and model on CPU only).

The first two items make sure all helpful calculations and settings PyTorch uses behind the scenes during training but aren't necessary for inference are turned off (this results in faster computation). And the third ensures that you won't run into cross-device errors.


下面代码片段是连接之前的博客

python 复制代码
import torch

# 1. Set the model in evaluation mode 
model_0.eval() 

# 2. Setup the inference mode context manager
with torch.inference_mode():
  # 3. Make sure the calculations are done with the model and data on the same device
  y_preds = model_0(X_test)

print(y_preds)

plot_predictions(predictions=y_preds)

# 结果如下
tensor([[0.8685],
        [0.8825],
        [0.8965],
        [0.9105],
        [0.9245],
        [0.9384],
        [0.9524],
        [0.9664],
        [0.9804],
        [0.9944]])

在下图,能看到预测点跟测试点很靠近,这结果挺理想的

这里稍微介绍一下 torch.inference_mode()

torch.inference.mode() 是一个上下文管理器,用于控制推断模式下的模型行为。在深度学习中,模型在训练和推断 (或称为预测) 阶段有不同的行为。在推断阶段,通常不需要计算梯度,也不需要跟踪计算图,这样可以提高推断速度并减少内存占用。torch.inference_mode() 上下文管理器就是为了控制模型在推断阶段的行为。

当进入torch.inference_mode() 上下文环境时,PyTorch会关闭梯度跟踪,并且禁用自动微分机制。这意味着在此环境中,无法调用backward()方法计算梯度,也无法通过梯度进行参数更新。这样可以确保模型在推断阶段不会意外地计算梯度,提高了推断的速度和效率。


都看到这里,点个赞支持一下呗~

相关推荐
九章云极AladdinEdu10 分钟前
临床数据挖掘与分析:利用GPU加速Pandas和Scikit-learn处理大规模数据集
人工智能·pytorch·数据挖掘·pandas·scikit-learn·paddlepaddle·gpu算力
上海锝秉工控11 分钟前
超声波风向传感器:以科技之翼,捕捉风的每一次呼吸
大数据·人工智能·科技
说私域11 分钟前
基于开源AI智能名片、链动2+1模式与S2B2C商城小程序的流量运营与个人IP构建研究
人工智能·小程序·流量运营
xiaoxiaoxiaolll2 小时前
期刊速递 | 《Light Sci. Appl.》超宽带光热电机理研究,推动碳纳米管传感器在制药质控中的实际应用
人工智能·学习
练习两年半的工程师2 小时前
AWS TechFest 2025: 风险模型的转变、流程设计的转型、生成式 AI 从实验走向实施的三大关键要素、评估生成式 AI 用例的适配度
人工智能·科技·金融·aws
Elastic 中国社区官方博客5 小时前
Elasticsearch:智能搜索的 MCP
大数据·人工智能·elasticsearch·搜索引擎·全文检索
stbomei5 小时前
从“能说话”到“会做事”:AI Agent如何重构日常工作流?
人工智能
yzx9910135 小时前
生活在数字世界:一份人人都能看懂的网络安全生存指南
运维·开发语言·网络·人工智能·自动化
许泽宇的技术分享6 小时前
LangGraph深度解析:构建下一代智能Agent的架构革命——从Pregel到现代AI工作流的技术飞跃
人工智能·架构
乔巴先生246 小时前
LLMCompiler:基于LangGraph的并行化Agent架构高效实现
人工智能·python·langchain·人机交互