机器学习 - 预测训练模型

接着上篇博客机器学习-训练模型做进一步说明。

There are three things to make predictions (also called performing inference) with a PyTorch model:

  1. Set the model in evaluation mode (model.eval())
  2. Make the predictions using the inference mode context manager (with torch.inference_mode(): ...)
  3. All predictions should be made with objects on the same device (e.g. data and model on GPU only or data and model on CPU only).

The first two items make sure all helpful calculations and settings PyTorch uses behind the scenes during training but aren't necessary for inference are turned off (this results in faster computation). And the third ensures that you won't run into cross-device errors.


下面代码片段是连接之前的博客

python 复制代码
import torch

# 1. Set the model in evaluation mode 
model_0.eval() 

# 2. Setup the inference mode context manager
with torch.inference_mode():
  # 3. Make sure the calculations are done with the model and data on the same device
  y_preds = model_0(X_test)

print(y_preds)

plot_predictions(predictions=y_preds)

# 结果如下
tensor([[0.8685],
        [0.8825],
        [0.8965],
        [0.9105],
        [0.9245],
        [0.9384],
        [0.9524],
        [0.9664],
        [0.9804],
        [0.9944]])

在下图,能看到预测点跟测试点很靠近,这结果挺理想的

这里稍微介绍一下 torch.inference_mode()

torch.inference.mode() 是一个上下文管理器,用于控制推断模式下的模型行为。在深度学习中,模型在训练和推断 (或称为预测) 阶段有不同的行为。在推断阶段,通常不需要计算梯度,也不需要跟踪计算图,这样可以提高推断速度并减少内存占用。torch.inference_mode() 上下文管理器就是为了控制模型在推断阶段的行为。

当进入torch.inference_mode() 上下文环境时,PyTorch会关闭梯度跟踪,并且禁用自动微分机制。这意味着在此环境中,无法调用backward()方法计算梯度,也无法通过梯度进行参数更新。这样可以确保模型在推断阶段不会意外地计算梯度,提高了推断的速度和效率。


都看到这里,点个赞支持一下呗~

相关推荐
哥布林学者3 小时前
吴恩达深度学习课程四:计算机视觉 第四周:卷积网络应用 (一) 人脸识别
深度学习·ai
NAGNIP3 小时前
GPT-5.1 发布:更聪明,也更有温度的 AI
人工智能·算法
NAGNIP3 小时前
激活函数有什么用?有哪些常用的激活函数?
人工智能·算法
骚戴4 小时前
2025 Python AI 实战:零基础调用 LLM API 开发指南
人工智能·python·大模型·llm·api·ai gateway
Cherry的跨界思维4 小时前
【AI测试全栈:质量模型】4、新AI测试金字塔:从单元到社会的四层测试策略落地指南
人工智能·单元测试·集成测试·ai测试·全栈ai·全栈ai测试·社会测试
亚马逊云开发者4 小时前
使用Amazon Nova模型实现自动化视频高光剪辑
人工智能
Tony Bai5 小时前
Go 的 AI 时代宣言:我们如何用“老”原则,解决“新”问题?
开发语言·人工智能·后端·golang
卤代烃5 小时前
🦾 可为与不可为:CDP 视角下的 Browser 控制边界
前端·人工智能·浏览器
ggabb5 小时前
海南封关:锚定中国制造2025,破解产业转移生死局
大数据·人工智能
_XU5 小时前
AI工具如何重塑我的开发日常
前端·人工智能·深度学习