机器学习 - 预测训练模型

接着上篇博客机器学习-训练模型做进一步说明。

There are three things to make predictions (also called performing inference) with a PyTorch model:

  1. Set the model in evaluation mode (model.eval())
  2. Make the predictions using the inference mode context manager (with torch.inference_mode(): ...)
  3. All predictions should be made with objects on the same device (e.g. data and model on GPU only or data and model on CPU only).

The first two items make sure all helpful calculations and settings PyTorch uses behind the scenes during training but aren't necessary for inference are turned off (this results in faster computation). And the third ensures that you won't run into cross-device errors.


下面代码片段是连接之前的博客

python 复制代码
import torch

# 1. Set the model in evaluation mode 
model_0.eval() 

# 2. Setup the inference mode context manager
with torch.inference_mode():
  # 3. Make sure the calculations are done with the model and data on the same device
  y_preds = model_0(X_test)

print(y_preds)

plot_predictions(predictions=y_preds)

# 结果如下
tensor([[0.8685],
        [0.8825],
        [0.8965],
        [0.9105],
        [0.9245],
        [0.9384],
        [0.9524],
        [0.9664],
        [0.9804],
        [0.9944]])

在下图,能看到预测点跟测试点很靠近,这结果挺理想的

这里稍微介绍一下 torch.inference_mode()

torch.inference.mode() 是一个上下文管理器,用于控制推断模式下的模型行为。在深度学习中,模型在训练和推断 (或称为预测) 阶段有不同的行为。在推断阶段,通常不需要计算梯度,也不需要跟踪计算图,这样可以提高推断速度并减少内存占用。torch.inference_mode() 上下文管理器就是为了控制模型在推断阶段的行为。

当进入torch.inference_mode() 上下文环境时,PyTorch会关闭梯度跟踪,并且禁用自动微分机制。这意味着在此环境中,无法调用backward()方法计算梯度,也无法通过梯度进行参数更新。这样可以确保模型在推断阶段不会意外地计算梯度,提高了推断的速度和效率。


都看到这里,点个赞支持一下呗~

相关推荐
Coder_Boy_几秒前
基于SpringAI的智能AIOps项目:微服务与DDD多模块融合设计概述
java·运维·人工智能·微服务·faiss
Apache IoTDB6 分钟前
TsFile 开源文件格式:AI 时代工业时序数据集新选择,让数据资产“活”起来
人工智能·开源
com_4sapi8 分钟前
星链引擎4SAPICOM:全球API服务平台优选,助力企业高效连接智能生态
大数据·人工智能·云计算
yumgpkpm14 分钟前
银行的数据智能平台和Cloudera CDP 7.3(CMP 7.3)的技术对接
数据库·人工智能·hive·hadoop·elasticsearch·数据挖掘·kafka
雅欣鱼子酱17 分钟前
Type-C 终端应用里 给产品增加PD快充取电 PD取电诱骗芯片有什么推荐?
人工智能·单片机·芯片·电子元器件
liulanba17 分钟前
大模型训练参数调优完整指南
人工智能·深度学习
liulanba19 分钟前
AI Agent技术完整指南 第三部分:监控与管理
人工智能
兜兜转转了多少年25 分钟前
《Python 应用机器学习:代码实战指南》笔记2 从0理解机器学习 —— 核心概念全解析
笔记·python·机器学习
火山引擎开发者社区27 分钟前
火山引擎发布系列《AI 安全白皮书》,构筑AI云原生可信基座
人工智能·安全·火山引擎
TonyLee01730 分钟前
pytorch深度学习训练随机种子设置
人工智能·pytorch·深度学习