机器学习 - 预测训练模型

接着上篇博客机器学习-训练模型做进一步说明。

There are three things to make predictions (also called performing inference) with a PyTorch model:

  1. Set the model in evaluation mode (model.eval())
  2. Make the predictions using the inference mode context manager (with torch.inference_mode(): ...)
  3. All predictions should be made with objects on the same device (e.g. data and model on GPU only or data and model on CPU only).

The first two items make sure all helpful calculations and settings PyTorch uses behind the scenes during training but aren't necessary for inference are turned off (this results in faster computation). And the third ensures that you won't run into cross-device errors.


下面代码片段是连接之前的博客

python 复制代码
import torch

# 1. Set the model in evaluation mode 
model_0.eval() 

# 2. Setup the inference mode context manager
with torch.inference_mode():
  # 3. Make sure the calculations are done with the model and data on the same device
  y_preds = model_0(X_test)

print(y_preds)

plot_predictions(predictions=y_preds)

# 结果如下
tensor([[0.8685],
        [0.8825],
        [0.8965],
        [0.9105],
        [0.9245],
        [0.9384],
        [0.9524],
        [0.9664],
        [0.9804],
        [0.9944]])

在下图,能看到预测点跟测试点很靠近,这结果挺理想的

这里稍微介绍一下 torch.inference_mode()

torch.inference.mode() 是一个上下文管理器,用于控制推断模式下的模型行为。在深度学习中,模型在训练和推断 (或称为预测) 阶段有不同的行为。在推断阶段,通常不需要计算梯度,也不需要跟踪计算图,这样可以提高推断速度并减少内存占用。torch.inference_mode() 上下文管理器就是为了控制模型在推断阶段的行为。

当进入torch.inference_mode() 上下文环境时,PyTorch会关闭梯度跟踪,并且禁用自动微分机制。这意味着在此环境中,无法调用backward()方法计算梯度,也无法通过梯度进行参数更新。这样可以确保模型在推断阶段不会意外地计算梯度,提高了推断的速度和效率。


都看到这里,点个赞支持一下呗~

相关推荐
skywalk81635 分钟前
GLM-edge-1.5B-chat 一个特别的cpu可以推理的小型llm模型
人工智能·ollama·llama.cpp
TsingtaoAI7 分钟前
TsingtaoAI荣膺2025澳门首届DSA国际创新创业大赛奖项,RISC-V AI机器人引领行业新突破
人工智能·机器人·risc-v
CClaris8 分钟前
手撕 LSTM:用 NumPy 从零实现 LSTM 前向传播
人工智能·numpy·lstm
夜幕龙19 分钟前
宇树 G1 部署(十一)——遥操作脚本升级 teleop_hand_and_arm_update.py
人工智能·机器人·具身智能
币之互联万物20 分钟前
聚焦新质生产力 科技与金融深度融合赋能创新
人工智能·科技·金融
喜乐boy28 分钟前
CV系列——Conda + PyTorch + CUDA + cuDNN + Python 环境无脑安装速查笔记[2025.12]
pytorch·python·conda·cuda·cv
viperrrrrrrrrr730 分钟前
AI音色克隆
人工智能·深度学习·语音识别
阿杰学AI33 分钟前
AI核心知识35——大语言模型之Generative AI(简洁且通俗易懂版)
人工智能·ai·语言模型·chatgpt·aigc·生成式ai·generative ai
IT_陈寒34 分钟前
Redis 性能骤降50%?这5个隐藏配置陷阱你可能从未注意过
前端·人工智能·后端
阿杰学AI35 分钟前
AI核心知识36——大语言模型之AGI(简洁且通俗易懂版)
人工智能·ai·语言模型·aigc·agi