sparksql DSL编程风格

sparksql的DataFrame支持两种风格的编程开发,一种是DSL风格,一种是SQL风格,下面介绍几个常用api,sparksql的api还得常查其官方文档https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/api/pyspark.sql.DataFrame.select.html#pyspark.sql.DataFrame.select

DSL风格

DSL是domain special language的简写,其实就是DataFrame特有的api,它的本质就是用调用api的的方式来处理data,如df.where().limit()

dsl风格的几个常用api如下:

select()

select的参数可以是str,list或column对象,返回是一个DataFrame

python 复制代码
// string作为参数
df.select("id", "subject").show()
df.select(["id", "subject"]).show()
id_col1 = df["id"]
id_col2 = df.id
id_col3 = df["subject"]
id_col4 = df.subject
df.select(id_col1, id_col3).show()
df.select(id_col2, id_col4)show()
filter()

filter只允许字符串表达式或column对象

python 复制代码
df.filter("score < 80").show()
df.filter(df['score'] < 80).show()
where()

where api 与上面类似

python 复制代码
df.where("score < 80").show()
df.where(df['score'] < 80).show()
groupBy()/groupby()

groupby的参数也是支持str、list、column对象,对指定的列进行分组,然后方便进行聚合、统计等计算,它的返回值是GroupData类型,是一个中间类型,这个类型有一系列计算方法如求和、平均等给开发者做聚合,我们通常最终需要的是分组后再做聚合的结果

https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/api/pyspark.sql.GroupedData.html#pyspark.sql.GroupedData

python 复制代码
df.groupBy("score").count().show()
相关推荐
数据猿11 分钟前
【金猿人物展】海尔智慧家尹德帅:以数据智能重构智慧家庭生态,引领场景品牌数字化转型新范式
大数据·人工智能·重构
科技块儿20 分钟前
电商风控实战:如何利用访客IP防控有效识别刷d行为?
大数据·网络协议·tcp/ip
MoonBit月兔27 分钟前
生态影响力持续提升,MoonBit 登 2025 中国技术品牌影响力榜单
大数据·人工智能·ai编程·moonbit
xiaolilaoshi66637 分钟前
备战浙大MBA复试,紧盯国家线有瑕疵!
大数据
CES_Asia2 小时前
亚洲科技话语权之争:CES Asia 2026核心展区席位进入收官阶段
大数据·人工智能·科技·物联网·机器人
quant_19862 小时前
如何处理大规模行情数据:从源头到终端的实战教程
大数据·开发语言·经验分享·python·金融
房产中介行业研习社2 小时前
市面上比较主流的房产中介管理系统有哪些推荐?
大数据·人工智能·房产直播技巧·房产直播培训
云器科技3 小时前
NinjaVan x 云器Lakehouse: 从传统自建Spark架构升级到新一代湖仓架构
大数据·ai·架构·spark·湖仓平台
泰迪智能科技3 小时前
分享|2025年广东水利电力职业技术学院泰迪数据智能产业学院订单班结业典礼圆满结束
大数据·人工智能
中科天工4 小时前
如何实现工业AI在智能制造中的应用?
大数据·人工智能·智能