sparksql DSL编程风格

sparksql的DataFrame支持两种风格的编程开发,一种是DSL风格,一种是SQL风格,下面介绍几个常用api,sparksql的api还得常查其官方文档https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/api/pyspark.sql.DataFrame.select.html#pyspark.sql.DataFrame.select

DSL风格

DSL是domain special language的简写,其实就是DataFrame特有的api,它的本质就是用调用api的的方式来处理data,如df.where().limit()

dsl风格的几个常用api如下:

select()

select的参数可以是str,list或column对象,返回是一个DataFrame

python 复制代码
// string作为参数
df.select("id", "subject").show()
df.select(["id", "subject"]).show()
id_col1 = df["id"]
id_col2 = df.id
id_col3 = df["subject"]
id_col4 = df.subject
df.select(id_col1, id_col3).show()
df.select(id_col2, id_col4)show()
filter()

filter只允许字符串表达式或column对象

python 复制代码
df.filter("score < 80").show()
df.filter(df['score'] < 80).show()
where()

where api 与上面类似

python 复制代码
df.where("score < 80").show()
df.where(df['score'] < 80).show()
groupBy()/groupby()

groupby的参数也是支持str、list、column对象,对指定的列进行分组,然后方便进行聚合、统计等计算,它的返回值是GroupData类型,是一个中间类型,这个类型有一系列计算方法如求和、平均等给开发者做聚合,我们通常最终需要的是分组后再做聚合的结果

https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/api/pyspark.sql.GroupedData.html#pyspark.sql.GroupedData

python 复制代码
df.groupBy("score").count().show()
相关推荐
武子康1 天前
大数据-184 Elasticsearch Doc Values 机制详解:列式存储如何支撑排序/聚合/脚本
大数据·后端·elasticsearch
expect7g1 天前
Paimon源码解读 -- Compaction-8.专用压缩任务
大数据·后端·flink
良策金宝AI1 天前
从CAD插件到原生平台:工程AI的演进路径与智能协同新范式
大数据·人工智能
康实训1 天前
智慧老年实训室建设核心方案
大数据·实训室·养老实训室·实训室建设
min1811234561 天前
分公司组织架构图在线设计 总部分支管理模板
大数据·人工智能·信息可视化·架构·流程图
周杰伦_Jay1 天前
【Elasticsearch】核心概念,倒排索引,数据操纵
大数据·elasticsearch·搜索引擎
cai_cai01 天前
springAlibaba + ollama + es 完成RAG知识库功能
大数据·elasticsearch·搜索引擎
Cx330❀1 天前
Git 分支管理完全指南:从基础到团队协作
大数据·git·搜索引擎·全文检索
nhdh1 天前
ELK(elasticsearch-7.6.2,kibana-7-6-2,Logstash-7.6.2)单节点部署
大数据·elk·elasticsearch
新元代码1 天前
Git在Windows环境下的安装与使用教程
大数据·elasticsearch·搜索引擎