sparksql DSL编程风格

sparksql的DataFrame支持两种风格的编程开发,一种是DSL风格,一种是SQL风格,下面介绍几个常用api,sparksql的api还得常查其官方文档https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/api/pyspark.sql.DataFrame.select.html#pyspark.sql.DataFrame.select

DSL风格

DSL是domain special language的简写,其实就是DataFrame特有的api,它的本质就是用调用api的的方式来处理data,如df.where().limit()

dsl风格的几个常用api如下:

select()

select的参数可以是str,list或column对象,返回是一个DataFrame

python 复制代码
// string作为参数
df.select("id", "subject").show()
df.select(["id", "subject"]).show()
id_col1 = df["id"]
id_col2 = df.id
id_col3 = df["subject"]
id_col4 = df.subject
df.select(id_col1, id_col3).show()
df.select(id_col2, id_col4)show()
filter()

filter只允许字符串表达式或column对象

python 复制代码
df.filter("score < 80").show()
df.filter(df['score'] < 80).show()
where()

where api 与上面类似

python 复制代码
df.where("score < 80").show()
df.where(df['score'] < 80).show()
groupBy()/groupby()

groupby的参数也是支持str、list、column对象,对指定的列进行分组,然后方便进行聚合、统计等计算,它的返回值是GroupData类型,是一个中间类型,这个类型有一系列计算方法如求和、平均等给开发者做聚合,我们通常最终需要的是分组后再做聚合的结果

https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/api/pyspark.sql.GroupedData.html#pyspark.sql.GroupedData

python 复制代码
df.groupBy("score").count().show()
相关推荐
leijiwen1 小时前
Bsin X BDCM:从流量驱动到价值激励驱动的智能增长引擎
大数据·人工智能·web3
fruge1 小时前
Git 进阶技巧:分支管理、冲突解决、提交规范实操
大数据·git·elasticsearch
1***y1782 小时前
区块链跨链桥、 跨链桥到底在解决什么问题?
大数据·人工智能·区块链
金融小师妹3 小时前
基于LSTM-GARCH混合模型:降息预期驱动金价攀升,白银刷新历史峰值的蒙特卡洛模拟验证
大数据·人工智能·深度学习·1024程序员节
有味道的男人3 小时前
速卖通商品详情接口(速卖通API系列)
java·大数据·数据库
天远云服4 小时前
Golang 硬核实战:手撸 AES-CBC 算法,对接天远风控决策接口
大数据·api
天远数科4 小时前
Node.js 全栈实战:5分钟对接天远风控 API与数据清洗
大数据·api
老蒋新思维4 小时前
创客匠人 2025 峰会深度解析:AI 赋能垂直领域,创始人 IP 变现的差异化路径
大数据·网络·人工智能·网络协议·tcp/ip·重构·知识付费
EveryPossible5 小时前
大数据优化
大数据
liliangcsdn5 小时前
如何从二项分布中抽取样本 - binomial
大数据·人工智能