sparksql DSL编程风格

sparksql的DataFrame支持两种风格的编程开发,一种是DSL风格,一种是SQL风格,下面介绍几个常用api,sparksql的api还得常查其官方文档https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/api/pyspark.sql.DataFrame.select.html#pyspark.sql.DataFrame.select

DSL风格

DSL是domain special language的简写,其实就是DataFrame特有的api,它的本质就是用调用api的的方式来处理data,如df.where().limit()

dsl风格的几个常用api如下:

select()

select的参数可以是str,list或column对象,返回是一个DataFrame

python 复制代码
// string作为参数
df.select("id", "subject").show()
df.select(["id", "subject"]).show()
id_col1 = df["id"]
id_col2 = df.id
id_col3 = df["subject"]
id_col4 = df.subject
df.select(id_col1, id_col3).show()
df.select(id_col2, id_col4)show()
filter()

filter只允许字符串表达式或column对象

python 复制代码
df.filter("score < 80").show()
df.filter(df['score'] < 80).show()
where()

where api 与上面类似

python 复制代码
df.where("score < 80").show()
df.where(df['score'] < 80).show()
groupBy()/groupby()

groupby的参数也是支持str、list、column对象,对指定的列进行分组,然后方便进行聚合、统计等计算,它的返回值是GroupData类型,是一个中间类型,这个类型有一系列计算方法如求和、平均等给开发者做聚合,我们通常最终需要的是分组后再做聚合的结果

https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/api/pyspark.sql.GroupedData.html#pyspark.sql.GroupedData

python 复制代码
df.groupBy("score").count().show()
相关推荐
尘世壹俗人20 小时前
分离Hadoop客户端单独使用
大数据·hadoop·分布式
厨 神20 小时前
11月10日ES本机
大数据·elasticsearch·搜索引擎
微盛企微增长小知识21 小时前
企业微信AI怎么用?从智能表格落地看如何提升运营效率
大数据·人工智能·企业微信
私域实战笔记21 小时前
如何选择企业微信SCRM?2025年3个选型参考维度
大数据·人工智能·企业微信·scrm·企业微信scrm
ZKNOW甄知科技21 小时前
重构企业运维智慧:低代码 ITSM 知识管理平台的创新与实践
大数据·运维·人工智能·程序人生·低代码·重构·it
AllData公司负责人1 天前
云原生数据平台(cloudeon)--核心服务组件扩展
大数据·云原生·架构·开源
武子康1 天前
大数据-153 Apache Druid 实时接入 Kafka:从摄取到查询的完整实战
大数据·后端·nosql
快乐非自愿1 天前
数智化时代:AI技术重构企业财务管理系统的底层逻辑与实践
大数据·人工智能·低代码
zskj_zhyl1 天前
解构智慧养老:当科技成为银发族的“隐形守护者”
大数据·人工智能·科技·物联网
芝麻开门-新起点1 天前
利用ArcPy批量检查管线隐患点与周边设施距离的实现方案
大数据