sparksql DSL编程风格

sparksql的DataFrame支持两种风格的编程开发,一种是DSL风格,一种是SQL风格,下面介绍几个常用api,sparksql的api还得常查其官方文档https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/api/pyspark.sql.DataFrame.select.html#pyspark.sql.DataFrame.select

DSL风格

DSL是domain special language的简写,其实就是DataFrame特有的api,它的本质就是用调用api的的方式来处理data,如df.where().limit()

dsl风格的几个常用api如下:

select()

select的参数可以是str,list或column对象,返回是一个DataFrame

python 复制代码
// string作为参数
df.select("id", "subject").show()
df.select(["id", "subject"]).show()
id_col1 = df["id"]
id_col2 = df.id
id_col3 = df["subject"]
id_col4 = df.subject
df.select(id_col1, id_col3).show()
df.select(id_col2, id_col4)show()
filter()

filter只允许字符串表达式或column对象

python 复制代码
df.filter("score < 80").show()
df.filter(df['score'] < 80).show()
where()

where api 与上面类似

python 复制代码
df.where("score < 80").show()
df.where(df['score'] < 80).show()
groupBy()/groupby()

groupby的参数也是支持str、list、column对象,对指定的列进行分组,然后方便进行聚合、统计等计算,它的返回值是GroupData类型,是一个中间类型,这个类型有一系列计算方法如求和、平均等给开发者做聚合,我们通常最终需要的是分组后再做聚合的结果

https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/api/pyspark.sql.GroupedData.html#pyspark.sql.GroupedData

python 复制代码
df.groupBy("score").count().show()
相关推荐
core51220 分钟前
flink sink doris
大数据·mysql·flink·doris·存储·sink·过程正常
武子康3 小时前
大数据-258 离线数仓 - Griffin架构 配置安装 Livy 架构设计 解压配置 Hadoop Hive
java·大数据·数据仓库·hive·hadoop·架构
lucky_syq5 小时前
Flume和Kafka的区别?
大数据·kafka·flume
AI_NEW_COME5 小时前
构建全方位大健康零售帮助中心:提升服务与体验
大数据·人工智能
it噩梦5 小时前
es 中 terms set 使用
大数据·elasticsearch
中科岩创6 小时前
中科岩创边坡自动化监测解决方案
大数据·网络·物联网
DolphinScheduler社区7 小时前
作业帮基于 Apache DolphinScheduler 3_0_0 的缺陷修复与优化
大数据
SeaTunnel7 小时前
京东科技基于 Apache SeaTunnel 复杂场景适配 #数据集成
大数据
喝醉酒的小白8 小时前
Elasticsearch 配置文件
大数据·elasticsearch·搜索引擎
一只敲代码的猪8 小时前
Llama 3 模型系列解析(一)
大数据·python·llama