sparksql DSL编程风格

sparksql的DataFrame支持两种风格的编程开发,一种是DSL风格,一种是SQL风格,下面介绍几个常用api,sparksql的api还得常查其官方文档https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/api/pyspark.sql.DataFrame.select.html#pyspark.sql.DataFrame.select

DSL风格

DSL是domain special language的简写,其实就是DataFrame特有的api,它的本质就是用调用api的的方式来处理data,如df.where().limit()

dsl风格的几个常用api如下:

select()

select的参数可以是str,list或column对象,返回是一个DataFrame

python 复制代码
// string作为参数
df.select("id", "subject").show()
df.select(["id", "subject"]).show()
id_col1 = df["id"]
id_col2 = df.id
id_col3 = df["subject"]
id_col4 = df.subject
df.select(id_col1, id_col3).show()
df.select(id_col2, id_col4)show()
filter()

filter只允许字符串表达式或column对象

python 复制代码
df.filter("score < 80").show()
df.filter(df['score'] < 80).show()
where()

where api 与上面类似

python 复制代码
df.where("score < 80").show()
df.where(df['score'] < 80).show()
groupBy()/groupby()

groupby的参数也是支持str、list、column对象,对指定的列进行分组,然后方便进行聚合、统计等计算,它的返回值是GroupData类型,是一个中间类型,这个类型有一系列计算方法如求和、平均等给开发者做聚合,我们通常最终需要的是分组后再做聚合的结果

https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/api/pyspark.sql.GroupedData.html#pyspark.sql.GroupedData

python 复制代码
df.groupBy("score").count().show()
相关推荐
会飞的老朱3 小时前
医药集团数智化转型,智能综合管理平台激活集团管理新效能
大数据·人工智能·oa协同办公
uesowys8 小时前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
AI_56788 小时前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
CRzkHbaXTmHw8 小时前
探索Flyback反激式开关电源的Matlab Simulink仿真之旅
大数据
七夜zippoe8 小时前
CANN Runtime任务描述序列化与持久化源码深度解码
大数据·运维·服务器·cann
盟接之桥8 小时前
盟接之桥说制造:引流品 × 利润品,全球电商平台高效产品组合策略(供讨论)
大数据·linux·服务器·网络·人工智能·制造
忆~遂愿9 小时前
ops-cv 算子库深度解析:面向视觉任务的硬件优化与数据布局(NCHW/NHWC)策略
java·大数据·linux·人工智能
忆~遂愿9 小时前
GE 引擎与算子版本控制:确保前向兼容性与图重写策略的稳定性
大数据·开发语言·docker
米羊12110 小时前
已有安全措施确认(上)
大数据·网络
人道领域11 小时前
AI抢人大战:谁在收割你的红包
大数据·人工智能·算法