微服务技术栈SpringCloud+RabbitMQ+Docker+Redis+搜索+分布式(五):分布式搜索 ES-中

文章目录

  • 一、DSL查询文档
    • [1.1 简单查询](#1.1 简单查询)
    • [1.2 复合查询](#1.2 复合查询)
  • 二、搜索结果处理
  • [三、RestClient演示 查询与结果分析](#三、RestClient演示 查询与结果分析)
  • 四、案例
    • [4.1 问题解析](#4.1 问题解析)
    • [4.2 代码](#4.2 代码)
      • [4.2.1 实体bean](#4.2.1 实体bean)
      • [4.2.2 控制层](#4.2.2 控制层)
      • [4.2.3 业务service](#4.2.3 业务service)
      • [4.2.4 启动类](#4.2.4 启动类)

一、DSL查询文档

1.1 简单查询

json 复制代码
# 1. DSL查询
# 1.1 查询所有

GET /hotel/_search
{
  "query": {
    "match_all": {}
  }
}

# 1.2 全文检索查询:对用户输入的内容分词后查询,常用于搜索框查询
# 1)match查询 :all字段是在创建hotel索引库时创建的,里面包括brand name busiess字段(copy to)
# 例子:查询hotel中brand、name、businiss中有"外滩"二字的文档
GET /hotel/_search
{
  "query": {
    "match": {
      "all": "外滩"
    }
  }
}
# 2)muiti_match查询:效果和上面一样
# 例子:查询hotel中brand、name、businiss中有"外滩如家"四字的文档
GET /hotel/_search
{
  "query": {
    "multi_match": {
      "query": "外滩如家",
      "fields": ["brand","name","business"]
    }
  }
}
# 3)match与multi_match的区别在于:match是单字段查询;而multi_match是多字段查询,字段越多性能越差;建议用copy to将多个字段拷到一个字段用match查询


# 1.3 精确查询:一般查找类型为keyword、boolean、数值、日期等字段,不分词
# 1)term:根据词条的精确值查询
# 例子:查询hotel中city="上海"的文档
GET /hotel/_search
{
  "query": {
    "term": {
      "city": {
        "value": "上海"
      }
    }
  }
}
# 2)range:根据值的范围查询
# 例子:查询price在(1000,2000]的文档
GET /hotel/_search
{
  "query": {
    "range": {
      "price": {
        "gt": 1108,
        "lte": 2000
      }
    }
  }
}

# 1.4 经纬度查询
# 1)geo_bounding_box:查询geo_point值落在某个矩形范围的所有文档
# 例子:查询hotel中location两个经纬度点矩形范围内内的文档
GET /hotel/_search
{
  "query": {
    "geo_bounding_box": {
      "location": {
        "top_left": {
          "lat": 31.1,
          "lon": 121.5
        },
        "bottom_right": {
          "lat": 30.9,
          "lon": 121.7
        }
      }
    }
  }
}

# 2)geo_distance:查询到指定中心点小于某个距离值的所有文档
# 例子:查询(31.21,121.5)范围内5km的的文档
GET /hotel/_search
{
  "query": {
    "geo_distance": {
      "distance": "5km",
      "location": "31.21, 121.5"
    }
  }
}

1.2 复合查询


json 复制代码
# 1.5 复合查询
# 1)function socre:算分函数查询,可以控制文档相关性算分,控制文档的排名
# 例:在all为"外滩"的查询中将"如家"这个品牌的酒店排名靠前一些
GET /hotel/_search
{
  "query": {
    "function_score": {
      "query": {
        "match": {
          "all": "外滩"
        }
      },
      "functions": [
        {
          "filter": {
            "term": {
              "brand": "如家"
            }
          },
          "weight": 10
        }
      ],
      "boost_mode": "sum"
    }
  }
}

# 2)布尔查询:组合多个子查询
# must:必须匹配每个子查询,相当于"与"
# should:选择性匹配子查询,相当于"或"
# must_not:必须不匹配【不参与算分】,相当于"非"
# filter:必须匹配【不参与算法】

# 例:查询name包含"如家",价格不高于400,坐标(31.21,121.5)范围内10km的hotel
# 下面代码中,如果将price和location放入must中会参与算分,为了节省性能,一般放在must_not或者filter中
GET /hotel/_search
{
  "query": {
    "bool": {
      "must": [
        {
          "match": {
            "name": "如家"
          }
        }
      ],
      "must_not": [
        {
          "range": {
            "price": {
              "gt": 400
            }
          }
        }
      ],
      "filter": [
        {
          "geo_distance": {
            "distance": "10km",
            "location": {
              "lat": 31.21,
              "lon": 121.5
            }
          }
        }
      ]
    }
  }
}

二、搜索结果处理

深度分页问题

json 复制代码
# 2. 搜索结果处理
# 2.1 排序:es默认根据算分排序。可以用来排序的字段有:keyword、数值、坐标、日期
# 例1:对hotel数据按用户评价score降序,相同评价按价格price升序
GET /hotel/_search
{
  "query": {
    "match_all": {}
  },
  "sort": [
    {
      "score": "desc"
    },
    {
      "price": "asc"
    }
  ]
}

# 例2:对hotel数据按你的坐标位置(115.450059,38.866053)距离升序排序
# 获取经纬度的方式:https://lbs.amap.com/demo/jsapi-v2/example/map/click-to-get-lnglat/
GET /hotel/_search
{
  "query": {
    "match_all": {}
  },
  "sort": [
    {
      "_geo_distance": {
        "location": {
          "lat": 38.866053,
          "lon": 115.45005
        },
        "order": "asc",
        "unit": "km"
      }
    }
  ]
}



# 2.2 分页:es默认返回top10的数据,想要查询更多需要设置
# from表示分页开始位置,默认为0;size表示期望获取文档数

GET /hotel/_search
{
  "query": {
    "match_all": {}
  },
  "from": 5,
  "size": 1,
  "sort": [
    {
      "price": "asc"
    }
  ]
}

# 2.3 高亮:将搜索结果的搜索关键字突出显示
# 原理:将搜索结果的关键字用标签标记出来,在页面中给标签添加css样式
# 注意:默认情况下ES搜索字段必须与高亮字段保持一致,而下面搜索字段为all,高亮字段为name,虽然all包括name,但是需要设置require_field_match=false
GET /hotel/_search
{
  "query": {
    "match": {
      "all": "如家"
    }
  },
  "highlight": {
    "fields": {
      "name": {
        "require_field_match": "false", 
        "pre_tags": "<em>",
        "post_tags": "</em>"
      }
    }
  }
}

三、RestClient演示 查询与结果分析

java 复制代码
@SpringBootTest
class HotelSearchTest {

    private RestHighLevelClient client;

    @BeforeEach
    void setUp() {
        client = new RestHighLevelClient(RestClient.builder(
                HttpHost.create("http://192.168.1.101:9200")
        ));
    }

    @AfterEach
    void tearDown() throws IOException {
        client.close();
    }

    /**
     * 解析json文档
     */
    private void handleResponse(SearchResponse response) {
        SearchHits searchHits = response.getHits();
        // 4.1.总条数
        long total = searchHits.getTotalHits().value;
        System.out.println("总条数:" + total);
        // 4.2.获取文档数组
        SearchHit[] hits = searchHits.getHits();
        // 4.3.遍历
        for (SearchHit hit : hits) {
            // 4.4.获取source
            String json = hit.getSourceAsString();
            // 4.5.反序列化,非高亮的
            HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class);
            // 4.6.处理高亮结果
            // 1)获取高亮map
            Map<String, HighlightField> map = hit.getHighlightFields();
            // 2)根据字段名,获取高亮结果
            HighlightField highlightField = map.get("name");
            // 3)获取高亮结果字符串数组中的第1个元素
            String hName = highlightField.getFragments()[0].toString();
            // 4)把高亮结果放到HotelDoc中
            hotelDoc.setName(hName);
            // 4.7.打印
            System.out.println(hotelDoc);
            System.out.println(json);
        }
    }

    /**
     * 查询所有文档
     */
    @Test
    void testMatchAll() throws IOException {
        // 1.准备request
        SearchRequest request = new SearchRequest("hotel");
        // 2.准备请求参数
        request.source().query(QueryBuilders.matchAllQuery());
        // 3.发送请求,得到响应
        SearchResponse response = client.search(request, RequestOptions.DEFAULT);
        // 4.结果解析
        handleResponse(response);
    }

    /**
     * 全文检索查询:match、multi_match
     */
    @Test
    void testMatch() throws IOException {
        // 1.准备request
        SearchRequest request = new SearchRequest("hotel");
        // 2.准备请求参数
        //request.source().query(QueryBuilders.matchQuery("all", "外滩如家"));
        request.source().query(QueryBuilders.multiMatchQuery("外滩如家", "name", "brand", "city"));
        // 3.发送请求,得到响应
        SearchResponse response = client.search(request, RequestOptions.DEFAULT);
        // 4.结果解析
        handleResponse(response);
    }

    /**
     * 1.精确查询:term、range
     * 2.boolean组合查询
     * 查询city为杭州,price>=250的文档
     */
    @Test
    void testBool() throws IOException {
        // 1.准备request
        SearchRequest request = new SearchRequest("hotel");
        // 2.准备请求参数
       /*
         BoolQueryBuilder boolQuery = QueryBuilders.boolQuery();
        // 2.1.must
        boolQuery.must(QueryBuilders.termQuery("city", "上海"));
        // 2.2.filter
        boolQuery.filter(QueryBuilders.rangeQuery("price").lte(250));
        request.source().query(boolQuery);
        */

        request.source().query(
                QueryBuilders.boolQuery()
                        .must(QueryBuilders.termQuery("city", "上海"))
                        .filter(QueryBuilders.rangeQuery("price").lte(250))
        );
        // 3.发送请求,得到响应
        SearchResponse response = client.search(request, RequestOptions.DEFAULT);
        // 4.结果解析
        handleResponse(response);
    }


    /**
     * 排序和分页
     */
    @Test
    void testSortAndPage() throws IOException {
        int page = 2,size = 5;

        // 1.准备request
        SearchRequest request = new SearchRequest("hotel");
        // 2.准备请求参数
        // 2.1.query
        request.source()
                .query(QueryBuilders.matchAllQuery());
        // 2.2.排序sort
        request.source().sort("price", SortOrder.ASC);
        // 2.3.分页 from\size
        request.source().from((page - 1) * size).size(size);

        // 3.发送请求,得到响应
        SearchResponse response = client.search(request, RequestOptions.DEFAULT);
        // 4.结果解析
        handleResponse(response);
    }

    /**
     * 结果高亮
     */
    @Test
    void testHighlight() throws IOException {
        // 1.准备request
        SearchRequest request = new SearchRequest("hotel");
        // 2.准备请求参数
        // 2.1.query
        request.source().query(QueryBuilders.matchQuery("all", "外滩如家"));
        // 2.2.高亮
        request.source().highlighter(
                new HighlightBuilder()
                        .field("name")
                        .requireFieldMatch(false));
        // 3.发送请求,得到响应
        SearchResponse response = client.search(request, RequestOptions.DEFAULT);
        // 4.结果解析
        handleResponse(response);
    }
}

四、案例

4.1 问题解析


4.2 代码

4.2.1 实体bean

PageResult.java 响应结果类:由搜索框得到的查询结果类

java 复制代码
/**
 * 响应结果类:由搜索框得到的查询结果类
 */
@Data
public class PageResult {
    private Long total; // 总条数
    private List<HotelDoc> hotels; // 酒店信息

    public PageResult() {
    }

    public PageResult(Long total, List<HotelDoc> hotels) {
        this.total = total;
        this.hotels = hotels;
    }
}

RequestParams.java 请求参数类:搜索框中有哪些参数

java 复制代码
/**
 * 请求参数类:搜索框中有哪些参数
 */
@Data
public class RequestParams {
    private String key;  // 搜索关键字
    private Integer page;// 当前页码
    private Integer size;// 每页大小
    private String sortBy;// 排序字段
    private String brand;// 品牌
    private String city;// 城市
    private String starName;// 星级
    private Integer minPrice;// 最低价格
    private Integer maxPrice;// 最高价格
    private String location;// 位置
}

4.2.2 控制层

java 复制代码
@RestController
@RequestMapping("hotel")
public class HotelController {

    @Autowired
    private IHotelService hotelService;

    @PostMapping("list")
    public PageResult search(@RequestBody RequestParams params) {
        return hotelService.search(params);
    }
}

4.2.3 业务service

java 复制代码
public interface IHotelService extends IService<Hotel> {
    PageResult search(RequestParams params);
}
java 复制代码
@Slf4j
@Service
public class HotelService extends ServiceImpl<HotelMapper, Hotel> implements IHotelService {

    @Autowired
    private RestHighLevelClient restHighLevelClient;

    @Override
    public PageResult search(RequestParams params) {
        try {
            // 1.准备Request
            SearchRequest request = new SearchRequest("hotel");

            // 2.准备请求参数

            // 2.1.多条件查询和过滤
            buildBasicQuery(params, request);

            // 2.2.分页
            int page = params.getPage();
            int size = params.getSize();
            request.source().from((page - 1) * size).size(size);

            /**
             * 2.3.距离排序
             */
            String location = params.getLocation();
            if (StringUtils.isNotBlank(location)) {// 不为空则查询
                request.source().sort(SortBuilders
                        .geoDistanceSort("location", new GeoPoint(location))
                        .order(SortOrder.ASC)
                        .unit(DistanceUnit.KILOMETERS)
                );
            }

            // 3.发送请求
            SearchResponse response = restHighLevelClient.search(request, RequestOptions.DEFAULT);

            // 4.解析响应
            return handleResponse(response);
        } catch (IOException e) {
            throw new RuntimeException("搜索数据失败", e);
        }
    }

    private void buildBasicQuery(RequestParams params, SearchRequest request) {
        // 1.准备Boolean复合查询
        BoolQueryBuilder boolQuery = QueryBuilders.boolQuery();

        /**
         * 1.查询关键字
         * must参与 算分
         */
        // 1.1.关键字搜索,match查询,放到must中
        String key = params.getKey();
        if (StringUtils.isNotBlank(key)) {
            // 不为空,根据关键字查询
            boolQuery.must(QueryBuilders.matchQuery("all", key));
        } else {
            // 为空,查询所有
            boolQuery.must(QueryBuilders.matchAllQuery());
        }
        /**
         * 2.条件过滤:多条件复合查询
         * 根据 "品牌 城市 星级 价格范围" 过滤数据
         * filter不参与 算分
         */

        // 1.2.品牌
        String brand = params.getBrand();
        if (StringUtils.isNotBlank(brand)) { // 不为空则查询
            boolQuery.filter(QueryBuilders.termQuery("brand", brand));
        }
        // 1.3.城市
        String city = params.getCity();
        if (StringUtils.isNotBlank(city)) {// 不为空则查询
            boolQuery.filter(QueryBuilders.termQuery("city", city));
        }
        // 1.4.星级
        String starName = params.getStarName();
        if (StringUtils.isNotBlank(starName)) {// 不为空则查询
            boolQuery.filter(QueryBuilders.termQuery("starName", starName));
        }
        // 1.5.价格范围
        Integer minPrice = params.getMinPrice();
        Integer maxPrice = params.getMaxPrice();
        if (minPrice != null && maxPrice != null) {// 不为空则查询
            maxPrice = maxPrice == 0 ? Integer.MAX_VALUE : maxPrice;
            boolQuery.filter(QueryBuilders.rangeQuery("price").gte(minPrice).lte(maxPrice));
        }

        /**
         * 3.算分函数查询
         * 置顶功能:给你置顶的酒店添加一个标记,并按其算分
         */
        FunctionScoreQueryBuilder functionScoreQuery = QueryBuilders.functionScoreQuery(
                boolQuery, // 原始查询,boolQuery
                new FunctionScoreQueryBuilder.FilterFunctionBuilder[]{ // function数组
                        new FunctionScoreQueryBuilder.FilterFunctionBuilder(
                                QueryBuilders.termQuery("isAD", true), // 过滤条件
                                ScoreFunctionBuilders.weightFactorFunction(10) // 算分函数
                        )
                }
        );

        /**
         * 4.设置查询条件
          */
        request.source().query(functionScoreQuery);
    }

    private PageResult handleResponse(SearchResponse response) {
        SearchHits searchHits = response.getHits();
        // 4.1.总条数
        long total = searchHits.getTotalHits().value;
        // 4.2.获取文档数组
        SearchHit[] hits = searchHits.getHits();
        // 4.3.遍历
        List<HotelDoc> hotels = new ArrayList<>(hits.length);
        for (SearchHit hit : hits) {
            // 4.4.获取source
            String json = hit.getSourceAsString();
            // 4.5.反序列化,非高亮的
            HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class);
            // 4.6.处理高亮结果
            // 1)获取高亮map
            Map<String, HighlightField> map = hit.getHighlightFields();
            if (map != null && !map.isEmpty()) {
                // 2)根据字段名,获取高亮结果
                HighlightField highlightField = map.get("name");
                if (highlightField != null) {
                    // 3)获取高亮结果字符串数组中的第1个元素
                    String hName = highlightField.getFragments()[0].toString();
                    // 4)把高亮结果放到HotelDoc中
                    hotelDoc.setName(hName);
                }
            }
            // 4.8.排序信息
            Object[] sortValues = hit.getSortValues(); // 获取排序结果
            if (sortValues.length > 0) {
                /**
                 * 由于该程序是根据距离[酒店距你选择位置的距离]进行排序,所以排序结果为距离
                 */
                hotelDoc.setDistance(sortValues[0]);
            }

            // 4.9.放入集合
            hotels.add(hotelDoc);
        }
        return new PageResult(total, hotels);
    }
}

4.2.4 启动类

java 复制代码
@MapperScan("cn.itcast.hotel.mapper")
@SpringBootApplication
public class HotelDemoApplication {

    public static void main(String[] args) {
        SpringApplication.run(HotelDemoApplication.class, args);
    }

    @Bean
    public RestHighLevelClient restHighLevelClient(){
        return new RestHighLevelClient(RestClient.builder(
                HttpHost.create("http://192.168.1.101:9200")
        ));   // 服务器IP+端口9200
    }
}
相关推荐
科技互联人生35 分钟前
微服务常用的中间件及其用途
微服务·中间件·系统架构
技术路上的苦行僧1 小时前
分布式专题(10)之ShardingSphere分库分表实战指南
分布式·shardingsphere·分库分表
小蜗牛慢慢爬行2 小时前
如何在 Spring Boot 微服务中设置和管理多个数据库
java·数据库·spring boot·后端·微服务·架构·hibernate
GitCode官方2 小时前
GitCode 光引计划投稿 | GoIoT:开源分布式物联网开发平台
分布式·开源·gitcode
小扳4 小时前
微服务篇-深入了解 MinIO 文件服务器(你还在使用阿里云 0SS 对象存储图片服务?教你使用 MinIO 文件服务器:实现从部署到具体使用)
java·服务器·分布式·微服务·云原生·架构
荆州克莱13 小时前
mysql中局部变量_MySQL中变量的总结
spring boot·spring·spring cloud·css3·技术
zquwei13 小时前
SpringCloudGateway+Nacos注册与转发Netty+WebSocket
java·网络·分布式·后端·websocket·网络协议·spring
DT辰白16 小时前
如何解决基于 Redis 的网关鉴权导致的 RESTful API 拦截问题?
后端·微服务·架构
道一云黑板报17 小时前
Flink集群批作业实践:七析BI批作业执行
大数据·分布式·数据分析·flink·kubernetes
老猿讲编程18 小时前
技术发展历程:从 CORBA 到微服务
微服务·云原生·架构