动态规划-算法

打家劫舍 - 198

你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。

给定一个代表每个房屋存放金额的非负整数数组,计算你在不触动警报装置的情况下,能够偷窃到的最高金额。

复制代码
示例 1:

输入: [1,2,3,1]
输出: 4
解释: 偷窃 1 号房屋 (金额 = 1) ,然后偷窃 3 号房屋 (金额 = 3)。
  偷窃到的最高金额 = 1 + 3 = 4 。
示例 2:

输入: [2,7,9,3,1]
输出: 12
解释: 偷窃 1 号房屋 (金额 = 2), 偷窃 3 号房屋 (金额 = 9),接着偷窃 5 号房屋 (金额 = 1)。
  偷窃到的最高金额 = 2 + 9 + 1 = 12 。

动态规划的一个很重要的过程就是找到「状态」和「状态转移方程」,在这个问题里,设 i 是当前屋子的下标,状态就是 以 i 为起点偷窃的最大价值

在某一个房子面前,盗贼只有两种选择:偷或者不偷。

偷的话,价值就是「当前房子的价值」+「下两个房子开始盗窃的最大价值」
不偷的话,价值就是「下一个房子开始盗窃的最大价值」
在这两个值中,选择最大值记录在 dp[i]中,就得到了以 i 为起点所能偷窃的最大价值。。

动态规划的起手式,找基础状态,在这题中,以终点为起点的最大价值一定是最好找的,因为终点不可能再继续往后偷窃了,所以设 n 为房子的总数量, dp[n - 1] 就是 nums[n - 1],小偷只能选择偷窃这个房子,而不能跳过去选择下一个不存在的房子。

那么就找到了动态规划的状态转移方程:

,并且从后往前求解。

复制代码
function (nums) {
  if (!nums.length) {
    return 0;
  }
  let dp = [];

  for (let i = nums.length - 1; i >= 0; i--) {
    let robNow = nums[i] + (dp[i + 2] || 0)
    let robNext = dp[i + 1] || 0

    dp[i] = Math.max(robNow, robNext)
  }

  return dp[0];
};

最后返回 以 0 为起点开始打劫的最大价值 即可。

相关推荐
不知天地为何吴女士2 小时前
Day32| 509. 斐波那契数、70. 爬楼梯、746. 使用最小花费爬楼梯
算法
小坏坏的大世界2 小时前
C++ STL常用容器总结(vector, deque, list, map, set)
c++·算法
励志要当大牛的小白菜4 小时前
ART配对软件使用
开发语言·c++·qt·算法
qq_513970444 小时前
力扣 hot100 Day56
算法·leetcode
PAK向日葵5 小时前
【算法导论】如何攻克一道Hard难度的LeetCode题?以「寻找两个正序数组的中位数」为例
c++·算法·面试
爱喝矿泉水的猛男7 小时前
非定长滑动窗口(持续更新)
算法·leetcode·职场和发展
YuTaoShao7 小时前
【LeetCode 热题 100】131. 分割回文串——回溯
java·算法·leetcode·深度优先
YouQian7728 小时前
Traffic Lights set的使用
算法
go54631584659 小时前
基于深度学习的食管癌右喉返神经旁淋巴结预测系统研究
图像处理·人工智能·深度学习·神经网络·算法
aramae10 小时前
大话数据结构之<队列>
c语言·开发语言·数据结构·算法