GPT实战系列-LangChain的Prompt提示模版构建

GPT实战系列-LangChain的Prompt提示模版构建

LangChain

GPT实战系列-LangChain如何构建基通义千问的多工具链

GPT实战系列-构建多参数的自定义LangChain工具

GPT实战系列-通过Basetool构建自定义LangChain工具方法

GPT实战系列-一种构建LangChain自定义Tool工具的简单方法

GPT实战系列-搭建LangChain流程简单应用

GPT实战系列-简单聊聊LangChain搭建本地知识库准备

GPT实战系列-LangChain + ChatGLM3构建天气查询助手

GPT实战系列-大模型为我所用之借用ChatGLM3构建查询助手

GPT实战系列-简单聊聊LangChain

大模型查询工具助手之股票免费查询接口

Prompt模版是用于生成语言模型提示的预定义模版。

模板可能包括说明、小样本示例,和特定的上下文和问题(适合于特定的任务)。

LangChain提供创建和使用提示模板的工具,其实也没有做太多的工作,就是字符串格式化操作差不多。模版与模型无关,使其适应在不同的语言模型中重复使用。

通常,语言模型的输入,通常是字符串或聊天消息列表。

Prompt模版

用于为字符串提示创建模板。PromptTemplate

默认情况下,PromptTemplate使用 Python 的 用于模板的 str.format 语法,一种字符替换的格式。

python 复制代码
from langchain.prompts import PromptTemplate

prompt_template = PromptTemplate.from_template(
    "Tell me a {adjective} joke about {content}."
)
prompt_template.format(adjective="funny", content="chickens")
text 复制代码
'Tell me a funny joke about chickens.'

该模板支持任意数量的变量,包括无变量:

python 复制代码
from langchain.prompts import PromptTemplate

prompt_template = PromptTemplate.from_template("Tell me a joke")
prompt_template.format()
text 复制代码
'Tell me a joke'

因此,您可以创建任意的自定义提示模板,以任何方式设置提示的格式。

聊天对话模版ChatPromptTemplate

通常,大语言模型(LLM)的应用模型是聊天模型,它的提示是聊天消息列表。

每条聊天消息都与内容相关联,并且其他 参数调用 。例如,在 OpenAI 聊天完成中 API,聊天 消息可以与 AI 助手、人类或系统相关联 角色。

创建一个聊天提示模板,如下所示:

python 复制代码
from langchain_core.prompts import ChatPromptTemplate

chat_template = ChatPromptTemplate.from_messages(
    [
        ("system", "You are a helpful AI bot. Your name is {name}."),
        ("human", "Hello, how are you doing?"),
        ("ai", "I'm doing well, thanks!"),
        ("human", "{user_input}"),
    ]
)

messages = chat_template.format_messages(name="Bob", user_input="What is your name?")

ChatPromptTemplate.from_messages 就是接受各种消息输入。

例如,除了使用 (type, content),则可以传入 or 的实例。MessagePromptTemplate``BaseMessage

python 复制代码
from langchain.prompts import HumanMessagePromptTemplate
from langchain_core.messages import SystemMessage
from langchain_openai import ChatOpenAI

chat_template = ChatPromptTemplate.from_messages(
    [
        SystemMessage(
            content=(
                "You are a helpful assistant that re-writes the user's text to "
                "sound more upbeat."
            )
        ),
        HumanMessagePromptTemplate.from_template("{text}"),
    ]
)
messages = chat_template.format_messages(text="I don't like eating tasty things")
print(messages)
text 复制代码
[SystemMessage(content="You are a helpful assistant that re-writes the user's text to sound more upbeat."), HumanMessage(content="I don't like eating tasty things")]

其实就是做了简单的封装,提供一些灵活性,来构建您的 聊天提示。

LangChain是一个Python框架,可以使用LLMs构建应用程序。它与各种模块连接,使与LLM和提示管理,一切变得简单。

觉得有用 收藏 收藏 收藏

点个赞 点个赞 点个赞

End

GPT专栏文章:

GPT实战系列-实战Qwen通义千问在Cuda 12+24G部署方案_通义千问 ptuning-CSDN博客

GPT实战系列-ChatGLM3本地部署CUDA11+1080Ti+显卡24G实战方案

GPT实战系列-Baichuan2本地化部署实战方案

GPT实战系列-让CodeGeeX2帮你写代码和注释_codegeex 中文-CSDN博客

GPT实战系列-ChatGLM3管理工具的API接口_chatglm3 api文档-CSDN博客

GPT实战系列-大话LLM大模型训练-CSDN博客

GPT实战系列-LangChain + ChatGLM3构建天气查询助手

GPT实战系列-大模型为我所用之借用ChatGLM3构建查询助手

GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(二)

GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(一)

GPT实战系列-ChatGLM2模型的微调训练参数解读

GPT实战系列-如何用自己数据微调ChatGLM2模型训练

GPT实战系列-ChatGLM2部署Ubuntu+Cuda11+显存24G实战方案

GPT实战系列-Baichuan2等大模型的计算精度与量化

GPT实战系列-GPT训练的Pretraining,SFT,Reward Modeling,RLHF

GPT实战系列-探究GPT等大模型的文本生成-CSDN博客

相关推荐
遇码4 小时前
大语言模型开发框架——LangChain
人工智能·语言模型·langchain·llm·大模型开发·智能体
a里啊里啊4 小时前
AI提示词收集(持续更新)
ai·大模型·prompt·开发·提示词
碳基学AI5 小时前
哈尔滨工业大学DeepSeek公开课:探索大模型原理、技术与应用从GPT到DeepSeek|附视频与讲义免费下载方法
大数据·人工智能·python·gpt·算法·语言模型·集成学习
*星星之火*6 小时前
【GPT入门】第33 课 一文吃透 LangChain:chain 结合 with_fallbacks ([]) 的实战指南
gpt·langchain
碧海饮冰16 小时前
LangChain/Eliza框架在使用场景上的异同,Eliza通过配置实现功能扩展的例子
langchain·eliza
姚瑞南20 小时前
从模糊感知到量化评估:构建一个Prompt打分工具
人工智能·自然语言处理·chatgpt·prompt·aigc
猪猪的超超1 天前
从吉卜力漫画到艺术创造:GPT-4o多种风格绘图Prompt大全
人工智能·prompt·文生图·gpt-4o
带娃的IT创业者1 天前
《AI大模型应知应会100篇》第7篇:Prompt Engineering基础:如何与大模型有效沟通
人工智能·prompt
x-cmd1 天前
[250401] OpenAI 向免费用户开放 GPT-4o 图像生成功能 | Neovim 0.11 新特性解读
人工智能·gpt·文生图·openai·命令行·neovim
Moutai码农1 天前
大模型-提示词(Prompt)技巧
人工智能·语言模型·prompt