opencv模板匹配

NORMED的意思就是结果范围在[-1, 1]之间

cv2.TM_SQDIFF, cv2.TM_SQDIFF_NORMED: `0 为最优,越大越差`,值越小越好

cv2.TM_CCORR, cv2.TM_CCORR_NORMED, cv2.TM_CCOEFF, cv2.TM_CCOEFF_NORMED: `越大越好`

复制代码
如果你使用的是 TM_SQDIFF 方法,那么确实需要使用灰度图像。这是因为 TM_SQDIFF 方法计算的是图像差异的平方和,而不是相关性。在这种情况下,你需要确保模板图像和待匹配图像都是灰度图像,以便正确计算差异。
如果你使用的是其他匹配方法(例如 TM_CCORR 或 TM_CCOEFF),则可以使用彩色图像。这些方法计算的是相关性或相关系数,而不涉及差异的平方和。

cv2.imread 是 OpenCV 中用于从指定文件加载图像的函数。第二个参数 flag 决定了图像的读取方式。在你提供的代码中,参数 0 表示将图像以灰度模式读取。

具体来说,这里的 0 对应以下标志:

  • cv2.IMREAD_GRAYSCALE:它指定以灰度模式加载图像。这意味着图像将被转换为单通道的灰度图像,每个像素的值在 0 到 255 之间,表示图像的亮度。这对于处理灰度图像或进行模板匹配等任务非常有用。

如果你想加载彩色图像,可以使用以下标志之一:

  • cv2.IMREAD_COLOR:加载彩色图像 ,忽略图像的透明度。这是默认标志,也可以用整数值 1 表示。

  • cv2.IMREAD_UNCHANGED:加载图像,包括透明通道 (如果有的话)。这对于处理带有 alpha 通道的图像很有用,也可以用整数值 -1 表示。

    method: TM_SQDIFF, 用minVal

    import cv2
    import numpy as np
    import matplotlib.pyplot as plt

    cat = cv2.imread('./aaaa.jpg', 0)
    template = cv2.imread('./template.png', 0)

    th, tw = template.shape[::]

    rv = cv2.matchTemplate(cat, template, cv2.TM_SQDIFF)

    minVal, maxVal, minLoc, maxLoc = cv2.minMaxLoc(rv)

    topLeft = minLoc
    bottomRight = (topLeft[0] + tw, topLeft[1] + th)
    cv2.rectangle(cat, topLeft, bottomRight, 255, 2)

    plt.subplot(121), plt.imshow(rv, cmap='gray')
    plt.title('Matching Result'), plt.xticks([]), plt.yticks([])
    plt.subplot(122), plt.imshow(cat, cmap='gray')
    plt.title('Detected Point'), plt.xticks([]), plt.yticks([])
    plt.show()

    TM_CCOEFF 方法, 越大越好,用maxVal
    import cv2
    import numpy as np
    import matplotlib.pyplot as plt

    cat = cv2.imread('./cats.jpg', 0)
    template = cv2.imread('./tongue.png', 0)
    tw, th = template.shape[::-1]
    rv = cv2.matchTemplate(cat, template, cv2.TM_CCOEFF)

    minVal, maxVal, minLoc, maxLoc = cv2.minMaxLoc(rv)
    topLeft = maxLoc

    bottomRight = (topLeft[0] + tw, topLeft[1] + th)
    cv2.rectangle(cat, topLeft, bottomRight, 255, 2)

    plt.subplot(121), plt.imshow(rv, cmap='gray')
    plt.title('Matching Result'), plt.xticks([]), plt.yticks([])
    plt.subplot(122), plt.imshow(cat, cmap='gray')
    plt.title('Detected Point'), plt.xticks([]), plt.yticks([])
    plt.show()

相关推荐
蹦蹦跳跳真可爱589几秒前
Python----目标检测(《SSD: Single Shot MultiBox Detector》论文和SSD的原理与网络结构)
人工智能·python·深度学习·神经网络·目标检测·计算机视觉
hahaha60169 分钟前
农业机器人的开发
人工智能·计算机视觉
lingxiao1688836 分钟前
测量3D翼片的距离与角度
计算机视觉·halcon·3d视觉
硅谷秋水2 小时前
Impromptu VLA:用于驾驶视觉-语言-动作模型的开放权重和开放数据
人工智能·机器学习·计算机视觉·语言模型·自动驾驶
jndingxin2 小时前
OpenCV CUDA模块霍夫变换------在 GPU 上执行概率霍夫变换检测图像中的线段端点类cv::cuda::HoughSegmentDetector
人工智能·opencv·计算机视觉
jndingxin2 小时前
OpenCV CUDA模块图像处理------图像融合函数blendLinear()
图像处理·人工智能·opencv
点云SLAM5 小时前
Python中os模块详解
开发语言·前端·人工智能·python·计算机视觉
Blossom.1186 小时前
人工智能在智能教育中的创新应用与未来趋势
java·人工智能·深度学习·目标检测·机器学习·计算机视觉·语音识别
EnochChen_6 小时前
计算A图片所有颜色占B图片红色区域的百分比
人工智能·opencv·计算机视觉
清醒的兰7 小时前
OpenCV 滑动条调整图像对比度和亮度
人工智能·opencv·计算机视觉