opencv模板匹配

NORMED的意思就是结果范围在[-1, 1]之间

cv2.TM_SQDIFF, cv2.TM_SQDIFF_NORMED: `0 为最优,越大越差`,值越小越好

cv2.TM_CCORR, cv2.TM_CCORR_NORMED, cv2.TM_CCOEFF, cv2.TM_CCOEFF_NORMED: `越大越好`

复制代码
如果你使用的是 TM_SQDIFF 方法,那么确实需要使用灰度图像。这是因为 TM_SQDIFF 方法计算的是图像差异的平方和,而不是相关性。在这种情况下,你需要确保模板图像和待匹配图像都是灰度图像,以便正确计算差异。
如果你使用的是其他匹配方法(例如 TM_CCORR 或 TM_CCOEFF),则可以使用彩色图像。这些方法计算的是相关性或相关系数,而不涉及差异的平方和。

cv2.imread 是 OpenCV 中用于从指定文件加载图像的函数。第二个参数 flag 决定了图像的读取方式。在你提供的代码中,参数 0 表示将图像以灰度模式读取。

具体来说,这里的 0 对应以下标志:

  • cv2.IMREAD_GRAYSCALE:它指定以灰度模式加载图像。这意味着图像将被转换为单通道的灰度图像,每个像素的值在 0 到 255 之间,表示图像的亮度。这对于处理灰度图像或进行模板匹配等任务非常有用。

如果你想加载彩色图像,可以使用以下标志之一:

  • cv2.IMREAD_COLOR:加载彩色图像 ,忽略图像的透明度。这是默认标志,也可以用整数值 1 表示。

  • cv2.IMREAD_UNCHANGED:加载图像,包括透明通道 (如果有的话)。这对于处理带有 alpha 通道的图像很有用,也可以用整数值 -1 表示。

    method: TM_SQDIFF, 用minVal

    import cv2
    import numpy as np
    import matplotlib.pyplot as plt

    cat = cv2.imread('./aaaa.jpg', 0)
    template = cv2.imread('./template.png', 0)

    th, tw = template.shape[::]

    rv = cv2.matchTemplate(cat, template, cv2.TM_SQDIFF)

    minVal, maxVal, minLoc, maxLoc = cv2.minMaxLoc(rv)

    topLeft = minLoc
    bottomRight = (topLeft[0] + tw, topLeft[1] + th)
    cv2.rectangle(cat, topLeft, bottomRight, 255, 2)

    plt.subplot(121), plt.imshow(rv, cmap='gray')
    plt.title('Matching Result'), plt.xticks([]), plt.yticks([])
    plt.subplot(122), plt.imshow(cat, cmap='gray')
    plt.title('Detected Point'), plt.xticks([]), plt.yticks([])
    plt.show()

    TM_CCOEFF 方法, 越大越好,用maxVal
    import cv2
    import numpy as np
    import matplotlib.pyplot as plt

    cat = cv2.imread('./cats.jpg', 0)
    template = cv2.imread('./tongue.png', 0)
    tw, th = template.shape[::-1]
    rv = cv2.matchTemplate(cat, template, cv2.TM_CCOEFF)

    minVal, maxVal, minLoc, maxLoc = cv2.minMaxLoc(rv)
    topLeft = maxLoc

    bottomRight = (topLeft[0] + tw, topLeft[1] + th)
    cv2.rectangle(cat, topLeft, bottomRight, 255, 2)

    plt.subplot(121), plt.imshow(rv, cmap='gray')
    plt.title('Matching Result'), plt.xticks([]), plt.yticks([])
    plt.subplot(122), plt.imshow(cat, cmap='gray')
    plt.title('Detected Point'), plt.xticks([]), plt.yticks([])
    plt.show()

相关推荐
天飓1 小时前
基于OpenCV的自制Python访客识别程序
人工智能·python·opencv
金蝶软件小李3 小时前
深度学习和图像处理
图像处理·深度学习·计算机视觉
Mr.简锋4 小时前
opencv常用api
人工智能·opencv·计算机视觉
liyuanbhu4 小时前
Halcon HImage 与 Qt QImage 的相互转换(修订版)
qt·计算机视觉·halcon
可均可可4 小时前
C++之OpenCV入门到提高005:005 图像操作
c++·图像处理·opencv·图像操作
机器视觉知识推荐、就业指导5 小时前
基于Qt/C++与OpenCV库 实现基于海康相机的图像采集和显示系统(工程源码可联系博主索要)
c++·qt·opencv
Mr.简锋5 小时前
opencv视频读写
人工智能·opencv·音视频
春末的南方城市6 小时前
开源音乐分离器Audio Decomposition:可实现盲源音频分离,无需外部乐器分离库,从头开始制作。将音乐转换为五线谱的程序
人工智能·计算机视觉·aigc·音视频
视觉小萌新6 小时前
VScode+opencv——关于opencv多张图片拼接成一张图片的算法
vscode·opencv·算法
Make_magic6 小时前
Git学习教程(更新中)
大数据·人工智能·git·elasticsearch·计算机视觉