opencv模板匹配

NORMED的意思就是结果范围在[-1, 1]之间

cv2.TM_SQDIFF, cv2.TM_SQDIFF_NORMED: `0 为最优,越大越差`,值越小越好

cv2.TM_CCORR, cv2.TM_CCORR_NORMED, cv2.TM_CCOEFF, cv2.TM_CCOEFF_NORMED: `越大越好`

复制代码
如果你使用的是 TM_SQDIFF 方法,那么确实需要使用灰度图像。这是因为 TM_SQDIFF 方法计算的是图像差异的平方和,而不是相关性。在这种情况下,你需要确保模板图像和待匹配图像都是灰度图像,以便正确计算差异。
如果你使用的是其他匹配方法(例如 TM_CCORR 或 TM_CCOEFF),则可以使用彩色图像。这些方法计算的是相关性或相关系数,而不涉及差异的平方和。

cv2.imread 是 OpenCV 中用于从指定文件加载图像的函数。第二个参数 flag 决定了图像的读取方式。在你提供的代码中,参数 0 表示将图像以灰度模式读取。

具体来说,这里的 0 对应以下标志:

  • cv2.IMREAD_GRAYSCALE:它指定以灰度模式加载图像。这意味着图像将被转换为单通道的灰度图像,每个像素的值在 0 到 255 之间,表示图像的亮度。这对于处理灰度图像或进行模板匹配等任务非常有用。

如果你想加载彩色图像,可以使用以下标志之一:

  • cv2.IMREAD_COLOR:加载彩色图像 ,忽略图像的透明度。这是默认标志,也可以用整数值 1 表示。

  • cv2.IMREAD_UNCHANGED:加载图像,包括透明通道 (如果有的话)。这对于处理带有 alpha 通道的图像很有用,也可以用整数值 -1 表示。

    method: TM_SQDIFF, 用minVal

    import cv2
    import numpy as np
    import matplotlib.pyplot as plt

    cat = cv2.imread('./aaaa.jpg', 0)
    template = cv2.imread('./template.png', 0)

    th, tw = template.shape[::]

    rv = cv2.matchTemplate(cat, template, cv2.TM_SQDIFF)

    minVal, maxVal, minLoc, maxLoc = cv2.minMaxLoc(rv)

    topLeft = minLoc
    bottomRight = (topLeft[0] + tw, topLeft[1] + th)
    cv2.rectangle(cat, topLeft, bottomRight, 255, 2)

    plt.subplot(121), plt.imshow(rv, cmap='gray')
    plt.title('Matching Result'), plt.xticks([]), plt.yticks([])
    plt.subplot(122), plt.imshow(cat, cmap='gray')
    plt.title('Detected Point'), plt.xticks([]), plt.yticks([])
    plt.show()

    TM_CCOEFF 方法, 越大越好,用maxVal
    import cv2
    import numpy as np
    import matplotlib.pyplot as plt

    cat = cv2.imread('./cats.jpg', 0)
    template = cv2.imread('./tongue.png', 0)
    tw, th = template.shape[::-1]
    rv = cv2.matchTemplate(cat, template, cv2.TM_CCOEFF)

    minVal, maxVal, minLoc, maxLoc = cv2.minMaxLoc(rv)
    topLeft = maxLoc

    bottomRight = (topLeft[0] + tw, topLeft[1] + th)
    cv2.rectangle(cat, topLeft, bottomRight, 255, 2)

    plt.subplot(121), plt.imshow(rv, cmap='gray')
    plt.title('Matching Result'), plt.xticks([]), plt.yticks([])
    plt.subplot(122), plt.imshow(cat, cmap='gray')
    plt.title('Detected Point'), plt.xticks([]), plt.yticks([])
    plt.show()

相关推荐
海绵波波10712 小时前
opencv、torch、torchvision、tensorflow的区别
人工智能·opencv·tensorflow
千宇宙航13 小时前
闲庭信步使用图像验证平台加速FPGA的开发:第二十一课——高斯下采样后图像还原的FPGA实现
图像处理·计算机视觉·fpga开发
蜉蝣之翼❉16 小时前
Amplitude Modulated (AM) Digital Halftoning
计算机视觉
顾随17 小时前
(三)OpenCV——图像形态学
图像处理·人工智能·python·opencv·计算机视觉
格林威21 小时前
Baumer工业相机堡盟工业相机如何通过YoloV8模型实现人物识别(C#)
开发语言·人工智能·数码相机·yolo·计算机视觉·c#
Virgil1391 天前
数据分布是如何影响目标检测精度的
人工智能·深度学习·yolo·目标检测·计算机视觉
CoovallyAIHub1 天前
YOLO11 vs LMWP-YOLO:参数量-52.5%,mAP+22.07%,小型无人机的远距离检测
深度学习·算法·计算机视觉
zhongqu_3dnest1 天前
众趣SDK重磅升级:空间物联IOT新视界,赋能实景三维场景深度应用
人工智能·物联网·计算机视觉·3d·点云处理·点云扫描
jndingxin1 天前
OpenCV直线段检测算法类cv::line_descriptor::LSDDetector
人工智能·opencv·算法
Blossom.1182 天前
深度学习中的注意力机制:原理、应用与实践
人工智能·深度学习·神经网络·机器学习·生成对抗网络·计算机视觉·sklearn