Amuse .NET application for stable diffusion

Amuse

github地址:https://github.com/tianleiwu/Amuse

.NET application for stable diffusion, Leveraging OnnxStack, Amuse seamlessly integrates many StableDiffusion capabilities all within the .NET eco-system

Welcome to Amuse!

Amuse is a professional and intuitive Windows UI for harnessing the capabilities of the ONNX (Open Neural Network Exchange) platform, allowing you to easily augment and enhance your creativity with the power of AI.

Amuse, written entirely in .NET, operates locally with a dependency-free architecture, providing a secure and private environment and eliminating the need for intricate setups or external dependencies such as Python. Unlike solutions reliant on external APIs, Amuse functions independently, ensuring privacy by operating offline. External connections are limited to the essential process of downloading models, preserving the security of your data and shielding your creative endeavors from external influences.

Experience the power of AI without compromise

Features

  • Paint To Image: Experience real-time AI-generated drawing-based art with stable diffusion.
  • Text To Image: Generate stunning images from text descriptions with AI-powered creativity.
  • Image To Image: Transform images seamlessly using advanced machine learning models.
  • Image Inpaint: Effortlessly fill in missing or damaged parts of images with intelligent inpainting.
  • Model Management: Install, download and manage all your models in a simple user interafce.

Amuse provides compatibility with a diverse set of models, including

  • StableDiffusion 1.5
  • StableDiffusion Inpaint
  • SDXL
  • SDXL Inpaint
  • SDXL-Turbo
  • LatentConsistency
  • LatentConsistency XL
  • Instaflow

Why Choose Amuse?

Amuse isn't just a tool; it's a gateway to a new realm of AI-enhanced creativity. Unlike traditional machine learning frameworks, Amuse is tailored for artistic expression and visual transformation. This Windows UI brings the power of AI to your fingertips, offering a unique experience in crafting AI-generated art.

Key Highlights

  • Intuitive AI-Enhanced Editing: Seamlessly edit and enhance images using advanced machine learning models.
  • Creative Freedom: Unleash your imagination with Text To Image, Image To Image, Image Inpaint, and Live Paint Stable Diffusion features, allowing you to explore novel ways of artistic expression.
  • Real-Time Results: Witness the magic unfold in real-time as Amuse applies live inference, providing instant feedback and empowering you to make creative decisions on the fly.

Amuse is not about building or deploying; it's about bringing AI directly into your creative process. Elevate your artistic endeavors with Amuse, the AI-augmented companion for visual storytellers and digital artists.

Paint To Image

Paint To Image is a cutting-edge image processing technique designed to revolutionize the creative process. This method allows users to paint on a canvas, transforming their artistic expressions into high-quality images while preserving the unique style and details of the original artwork. Harnessing the power of stable diffusion, Paint To Image opens up a realm of possibilities for artistic endeavors, enabling users to seamlessly translate their creative brushstrokes into visually stunning images. Whether it's digital art creation, stylized rendering, or other image manipulation tasks, Paint To Image delivers a versatile and intuitive solution for transforming painted canvases into captivating digital masterpieces.

Text To Image

Text To Image Stable Diffusion is a powerful machine learning technique that allows you to generate high-quality images from textual descriptions. It combines the capabilities of text understanding and image synthesis to convert natural language descriptions into visually coherent and meaningful images

Image To Image

Image To Image Stable Diffusion is an advanced image processing and generation method that excels in transforming one image into another while preserving the visual quality and structure of the original content. Using stable diffusion, this technique can perform a wide range of image-to-image tasks, such as style transfer, super-resolution, colorization, and more

Image Inpaint

Image inpainting is an image modification/restoration technique that intelligently fills in missing or damaged portions of an image while maintaining visual consistency. It's used for tasks like photo restoration and object removal, creating seamless and convincing results.

Model Manager

Discover the simplicity of our Model Manager -- your all-in-one tool for stress-free model management. Easily navigate through an intuitive interface that takes the hassle out of deploying, updating, and monitoring your stable diffusion models. No need for configuration headaches; our Model Manager makes it a breeze to install new models. Stay in control effortlessly, and let your creative process evolve smoothly.

Getting Started

Get started now with our helpful documentation: https://github.com/Stackyard-AI/Amuse/blob/master/Docs/GettingStarted.md

Hardware Requirements

Compute Requirements

Generating results demands significant computational time. Below are the minimum requirements for accomplishing such tasks using Amuse

Device Requirement
CPU Any modern Intel/AMD
AMD GPU Radeon HD 7000 series and above
Intel HD Integrated Graphics and above (4th-gen core)
NVIDIA GTX 600 series and above.

Memory Requirements

AI operations can be memory-intensive. Below is a small table outlining the minimum RAM or VRAM requirements for Amuse

Model Device Precision RAM/VRAM
Stable Diffusion GPU 16 ~4GB
Stable Diffusion CPU/GPU 32 ~8GB
SDXL CPU/GPU 32 ~18GB

System Requirements

Amuse provides various builds tailored for specific hardware. DirectML is the default choice, offering the broadest compatibility across devices.

Build Device Requirements
CPU CPU None
DirectML CPU, AMD GPU, Nvidia GPU At least Windows10
CUDA Nvidia GPU CUDA 11 and cuDNN toolkit
TensorRT Nvidia GPU CUDA 11 , cuDNN and TensorRT libraries

Realtime Requirements

Real-time stable diffusion introduces a novel concept and demands a substantial amount of resources. The table below showcases achievable speeds on commonly tested graphics cards

Device Model FPS
GTX 2080 LCM_Dreamshaper_v7_Olive_Onnx 1-2
RTX 3090 LCM_Dreamshaper_v7_Olive_Onnx 3-4
相关推荐
迈火7 天前
Facerestore CF (Code Former):ComfyUI人脸修复的卓越解决方案
人工智能·gpt·计算机视觉·stable diffusion·aigc·语音识别·midjourney
重启编程之路8 天前
Stable Diffusion 参数记录
stable diffusion
孤狼warrior11 天前
图像生成 Stable Diffusion模型架构介绍及使用代码 附数据集批量获取
人工智能·python·深度学习·stable diffusion·cnn·transformer·stablediffusion
love530love13 天前
【避坑指南】提示词“闹鬼”?Stable Diffusion 自动注入神秘词汇 xiao yi xian 排查全记录
人工智能·windows·stable diffusion·model keyword
世界尽头与你13 天前
Stable Diffusion web UI 未授权访问漏洞
安全·网络安全·stable diffusion·渗透测试
love530love13 天前
【故障解析】Stable Diffusion WebUI 更换主题后启动报 JSONDecodeError?可能是“主题加载”惹的祸
人工智能·windows·stable diffusion·大模型·json·stablediffusion·gradio 主题
ai_xiaogui18 天前
Stable Diffusion Web UI 绘世版 v4.6.1 整合包:一键极速部署,深度解决 AI 绘画环境配置与 CUDA 依赖难题
人工智能·stable diffusion·环境零配置·高性能内核优化·全功能插件集成·极速部署体验
微学AI19 天前
金仓数据库的新格局:以多模融合开创文档数据库
人工智能·stable diffusion
我的golang之路果然有问题19 天前
开源绘画大模型简单了解
人工智能·ai作画·stable diffusion·人工智能作画
我的golang之路果然有问题19 天前
comfyUI中的动作提取分享
人工智能·stable diffusion·ai绘画·人工智能作画·comfy