Amuse .NET application for stable diffusion

Amuse

github地址:https://github.com/tianleiwu/Amuse

.NET application for stable diffusion, Leveraging OnnxStack, Amuse seamlessly integrates many StableDiffusion capabilities all within the .NET eco-system

Welcome to Amuse!

Amuse is a professional and intuitive Windows UI for harnessing the capabilities of the ONNX (Open Neural Network Exchange) platform, allowing you to easily augment and enhance your creativity with the power of AI.

Amuse, written entirely in .NET, operates locally with a dependency-free architecture, providing a secure and private environment and eliminating the need for intricate setups or external dependencies such as Python. Unlike solutions reliant on external APIs, Amuse functions independently, ensuring privacy by operating offline. External connections are limited to the essential process of downloading models, preserving the security of your data and shielding your creative endeavors from external influences.

Experience the power of AI without compromise

Features

  • Paint To Image: Experience real-time AI-generated drawing-based art with stable diffusion.
  • Text To Image: Generate stunning images from text descriptions with AI-powered creativity.
  • Image To Image: Transform images seamlessly using advanced machine learning models.
  • Image Inpaint: Effortlessly fill in missing or damaged parts of images with intelligent inpainting.
  • Model Management: Install, download and manage all your models in a simple user interafce.

Amuse provides compatibility with a diverse set of models, including

  • StableDiffusion 1.5
  • StableDiffusion Inpaint
  • SDXL
  • SDXL Inpaint
  • SDXL-Turbo
  • LatentConsistency
  • LatentConsistency XL
  • Instaflow

Why Choose Amuse?

Amuse isn't just a tool; it's a gateway to a new realm of AI-enhanced creativity. Unlike traditional machine learning frameworks, Amuse is tailored for artistic expression and visual transformation. This Windows UI brings the power of AI to your fingertips, offering a unique experience in crafting AI-generated art.

Key Highlights

  • Intuitive AI-Enhanced Editing: Seamlessly edit and enhance images using advanced machine learning models.
  • Creative Freedom: Unleash your imagination with Text To Image, Image To Image, Image Inpaint, and Live Paint Stable Diffusion features, allowing you to explore novel ways of artistic expression.
  • Real-Time Results: Witness the magic unfold in real-time as Amuse applies live inference, providing instant feedback and empowering you to make creative decisions on the fly.

Amuse is not about building or deploying; it's about bringing AI directly into your creative process. Elevate your artistic endeavors with Amuse, the AI-augmented companion for visual storytellers and digital artists.

Paint To Image

Paint To Image is a cutting-edge image processing technique designed to revolutionize the creative process. This method allows users to paint on a canvas, transforming their artistic expressions into high-quality images while preserving the unique style and details of the original artwork. Harnessing the power of stable diffusion, Paint To Image opens up a realm of possibilities for artistic endeavors, enabling users to seamlessly translate their creative brushstrokes into visually stunning images. Whether it's digital art creation, stylized rendering, or other image manipulation tasks, Paint To Image delivers a versatile and intuitive solution for transforming painted canvases into captivating digital masterpieces.

Text To Image

Text To Image Stable Diffusion is a powerful machine learning technique that allows you to generate high-quality images from textual descriptions. It combines the capabilities of text understanding and image synthesis to convert natural language descriptions into visually coherent and meaningful images

Image To Image

Image To Image Stable Diffusion is an advanced image processing and generation method that excels in transforming one image into another while preserving the visual quality and structure of the original content. Using stable diffusion, this technique can perform a wide range of image-to-image tasks, such as style transfer, super-resolution, colorization, and more

Image Inpaint

Image inpainting is an image modification/restoration technique that intelligently fills in missing or damaged portions of an image while maintaining visual consistency. It's used for tasks like photo restoration and object removal, creating seamless and convincing results.

Model Manager

Discover the simplicity of our Model Manager -- your all-in-one tool for stress-free model management. Easily navigate through an intuitive interface that takes the hassle out of deploying, updating, and monitoring your stable diffusion models. No need for configuration headaches; our Model Manager makes it a breeze to install new models. Stay in control effortlessly, and let your creative process evolve smoothly.

Getting Started

Get started now with our helpful documentation: https://github.com/Stackyard-AI/Amuse/blob/master/Docs/GettingStarted.md

Hardware Requirements

Compute Requirements

Generating results demands significant computational time. Below are the minimum requirements for accomplishing such tasks using Amuse

Device Requirement
CPU Any modern Intel/AMD
AMD GPU Radeon HD 7000 series and above
Intel HD Integrated Graphics and above (4th-gen core)
NVIDIA GTX 600 series and above.

Memory Requirements

AI operations can be memory-intensive. Below is a small table outlining the minimum RAM or VRAM requirements for Amuse

Model Device Precision RAM/VRAM
Stable Diffusion GPU 16 ~4GB
Stable Diffusion CPU/GPU 32 ~8GB
SDXL CPU/GPU 32 ~18GB

System Requirements

Amuse provides various builds tailored for specific hardware. DirectML is the default choice, offering the broadest compatibility across devices.

Build Device Requirements
CPU CPU None
DirectML CPU, AMD GPU, Nvidia GPU At least Windows10
CUDA Nvidia GPU CUDA 11 and cuDNN toolkit
TensorRT Nvidia GPU CUDA 11 , cuDNN and TensorRT libraries

Realtime Requirements

Real-time stable diffusion introduces a novel concept and demands a substantial amount of resources. The table below showcases achievable speeds on commonly tested graphics cards

Device Model FPS
GTX 2080 LCM_Dreamshaper_v7_Olive_Onnx 1-2
RTX 3090 LCM_Dreamshaper_v7_Olive_Onnx 3-4
相关推荐
农夫山泉2号14 小时前
【个人开源】——从零开始在高通手机上部署sd(一)
stable diffusion·智能手机·sd·高通·qnn
AIGC安琪1 天前
【Stable Diffusion】SD迎来动画革命,AnimateDiff快速出图
人工智能·网络协议·tcp/ip·stable diffusion·aigc
Allen-Steven4 天前
《Stable Diffusion绘画完全指南:从入门到精通的Prompt设计艺术》-配套代码示例
人工智能·pytorch·深度学习·stable diffusion·prompt·checkpoint
普通网友4 天前
自动化办公更简单了!新版python-office,有哪些更新?
运维·人工智能·python·stable diffusion·数据挖掘·自动化·midjourney
燃灯工作室5 天前
扩散模型中的马尔可夫链设计演进:从DDPM到Stable Diffusion全解析
stable diffusion
灵魂画师向阳6 天前
万字长文破解 AI 图片生成算法-Stable diffusion
人工智能·算法·计算机视觉·ai作画·stable diffusion·美女
普通网友6 天前
文生图与图生图两款AI工具Midjourney(MJ)和Stable Diffusion(SD)对比
数据库·人工智能·stable diffusion·音视频·midjourney·媒体
AlbertS6 天前
Ubuntu20.04部署stable-diffusion-webui环境小记
python·ai·stable diffusion·nvidia·venv
Allen-Steven8 天前
《Stable Diffusion绘画完全指南:从入门到精通的Prompt设计艺术》 第三章
人工智能·stable diffusion·prompt
zhonguncle8 天前
如何正确安装Stable Diffusion Web UI以及对应的xFormers
stable diffusion·xformers