机器学习 - 准备数据

"Data" in machine learning can be almost anything you can imagine. A table of big Excel spreadsheet, images, videos, audio files, text and more.

机器学习其实可以分为两部分

  1. 将不管是什么data,都转成numbers.
  2. 挑选或者建立一个模型来学习这些numbers as best as possible.

下面是代码展示,创建一个straight line data

python 复制代码
import torch 
from torch import nn  # nn: neural networks. This package contains the building blocks for creating neural networks 
import matplotlib.pyplot as plt 

# Create linear regression parameters
weight = 0.7
bias = 0.3 

# Create data 
start = 0
end = 1
step = 0.02 
X = torch.arange(start, end, step).unsqueeze(dim=1)  # X is features
y = weight * X + bias   # y is labels
print(X[:10])
print(y[:10])

# 结果如下
tensor([[0.0000],
        [0.0200],
        [0.0400],
        [0.0600],
        [0.0800],
        [0.1000],
        [0.1200],
        [0.1400],
        [0.1600],
        [0.1800]])
tensor([[0.3000],
        [0.3140],
        [0.3280],
        [0.3420],
        [0.3560],
        [0.3700],
        [0.3840],
        [0.3980],
        [0.4120],
        [0.4260]])

将上面获取到的数据进行拆分,每部分数据带有不同的意思。

Split Purpose Amount of total data How often is it used?
Training set The model learns from this data (like the course materials you study during the semester) ~60-80% Always
Validation set The model gets tuned on this data (like the practice exam you take before the final exam). ~10-20% Often but not always
Testing set The model gets evaluated on this data to test what it has leanred (like the final exam you take at the end of the semester). ~10-20% Always

When dealing with real-world data, this step is typically done right at the start of a project (the test set should always be kept separate from all other data). Let the model learn on training data and then evaluate the model on test data to get an indication of how well it generalizes to unseen examples.

下面是代码。

python 复制代码
# Create train/test split 
train_split = int(0.8 * len(X))
X_train, y_train = X[:train_split], y[:train_split]
X_test, y_test = X[train_split:], y[train_split:]

# Learn the relationship between X_train and y_train
print(f"X_train length: {len(X_train)}")
print(f"y_train length: {len(y_train)}")
# Learn the relationship between X_test and y_test
print(f"X_test length: {len(X_test)}")
print(f"y_test length: {len(y_test)}")

# 输出如下
X_train length: 40
y_train length: 40
X_test length: 10
y_test length: 10

通过将各个数字显示出来,更直观

python 复制代码
plt.figure(figsize=(10, 7))

# s 代表是散点的大小
plt.scatter(X_train, y_train, c="b", s=4, label="Training data")
plt.scatter(X_test, y_test, c="r", s=4, label="Testing data")

plt.legend(prop={"size": 14})
plt.show()

都看到这了,给个赞呗~

相关推荐
大千AI助手2 分钟前
多维空间的高效导航者:KD树算法深度解析
数据结构·人工智能·算法·机器学习·大千ai助手·kd tree·kd树
Coding茶水间3 分钟前
基于深度学习的西红柿成熟度检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉
roman_日积跬步-终至千里3 分钟前
【模式识别与机器学习(11)】数据预处理(第三部分):高级技术与质量保证
人工智能·机器学习·支持向量机
HX4365 分钟前
Swift - Sendable (not just Sendable)
人工智能·ios·全栈
大白的编程笔记6 分钟前
大语言模型(Large Language Model, LLM)系统详解
人工智能·语言模型·自然语言处理
凋零蓝玫瑰12 分钟前
几何:数学世界的空间密码
人工智能·算法·机器学习
roman_日积跬步-终至千里12 分钟前
【模式识别与机器学习(13)】神经网络与深度学习(二):卷积神经网络、正则化、优化算法、循环神经网络
深度学习·神经网络·机器学习
小程故事多_8016 分钟前
基于LangGraph与Neo4j构建智能体级GraphRAG:打造下一代膳食规划助手
人工智能·aigc·neo4j
D***y20116 分钟前
【Python】网络爬虫——词云wordcloud详细教程,爬取豆瓣最新评论并生成各式词云
爬虫·python·信息可视化