机器学习 - 准备数据

"Data" in machine learning can be almost anything you can imagine. A table of big Excel spreadsheet, images, videos, audio files, text and more.

机器学习其实可以分为两部分

  1. 将不管是什么data,都转成numbers.
  2. 挑选或者建立一个模型来学习这些numbers as best as possible.

下面是代码展示,创建一个straight line data

python 复制代码
import torch 
from torch import nn  # nn: neural networks. This package contains the building blocks for creating neural networks 
import matplotlib.pyplot as plt 

# Create linear regression parameters
weight = 0.7
bias = 0.3 

# Create data 
start = 0
end = 1
step = 0.02 
X = torch.arange(start, end, step).unsqueeze(dim=1)  # X is features
y = weight * X + bias   # y is labels
print(X[:10])
print(y[:10])

# 结果如下
tensor([[0.0000],
        [0.0200],
        [0.0400],
        [0.0600],
        [0.0800],
        [0.1000],
        [0.1200],
        [0.1400],
        [0.1600],
        [0.1800]])
tensor([[0.3000],
        [0.3140],
        [0.3280],
        [0.3420],
        [0.3560],
        [0.3700],
        [0.3840],
        [0.3980],
        [0.4120],
        [0.4260]])

将上面获取到的数据进行拆分,每部分数据带有不同的意思。

Split Purpose Amount of total data How often is it used?
Training set The model learns from this data (like the course materials you study during the semester) ~60-80% Always
Validation set The model gets tuned on this data (like the practice exam you take before the final exam). ~10-20% Often but not always
Testing set The model gets evaluated on this data to test what it has leanred (like the final exam you take at the end of the semester). ~10-20% Always

When dealing with real-world data, this step is typically done right at the start of a project (the test set should always be kept separate from all other data). Let the model learn on training data and then evaluate the model on test data to get an indication of how well it generalizes to unseen examples.

下面是代码。

python 复制代码
# Create train/test split 
train_split = int(0.8 * len(X))
X_train, y_train = X[:train_split], y[:train_split]
X_test, y_test = X[train_split:], y[train_split:]

# Learn the relationship between X_train and y_train
print(f"X_train length: {len(X_train)}")
print(f"y_train length: {len(y_train)}")
# Learn the relationship between X_test and y_test
print(f"X_test length: {len(X_test)}")
print(f"y_test length: {len(y_test)}")

# 输出如下
X_train length: 40
y_train length: 40
X_test length: 10
y_test length: 10

通过将各个数字显示出来,更直观

python 复制代码
plt.figure(figsize=(10, 7))

# s 代表是散点的大小
plt.scatter(X_train, y_train, c="b", s=4, label="Training data")
plt.scatter(X_test, y_test, c="r", s=4, label="Testing data")

plt.legend(prop={"size": 14})
plt.show()

都看到这了,给个赞呗~

相关推荐
豌豆花下猫17 分钟前
Python 潮流周刊#83:uv 的使用技巧(摘要)
后端·python·ai
算家云23 分钟前
Stability AI 新一代AI绘画模型:StableCascade 本地部署教程
人工智能·ai作画·stable diffusion·模型构建·算家云·算力租赁·stablecascade
凡人的AI工具箱24 分钟前
每天40分玩转Django:Django部署概述
开发语言·数据库·后端·python·django
RacheV+TNY26427829 分钟前
深度解析:电商平台API接口的安全挑战与应对策略
人工智能·python·自动化·api
学术会议31 分钟前
“智能控制的新纪元:2025年机器学习与控制工程国际会议引领变革
大数据·人工智能·科技·计算机网络·机器学习·区块链
卖个几把萌40 分钟前
【10】Selenium+Python UI自动化测试 邮件发送测试报告(某积载系统实例-04)
python·selenium·ui
呆头鹅AI工作室1 小时前
基于特征工程(pca分析)、小波去噪以及数据增强,同时采用基于注意力机制的BiLSTM、随机森林、ARIMA模型进行序列数据预测
人工智能·深度学习·神经网络·算法·随机森林·回归
huhuhu15321 小时前
第P4周:猴痘病识别
图像处理·python·深度学习·cnn
HelloZheQ1 小时前
深入了解 Java 字符串:基础、操作与性能优化
java·python·性能优化
白雪公主的后妈1 小时前
Python基础语法知识——控制语句
python