深度学习pytorch——多层感知机反向传播(持续更新)

在讲解多层感知机反向传播之前,先来回顾一下多输出感知机的问题,下图是一个多输出感知机模型:
课时44 反向传播算法-1_哔哩哔哩_bilibili

根据上一次的分析深度学习pytorch------感知机(Perceptron)(持续更新)-CSDN博客我们得出来了如下的结论,即损失对参数的导数只与这条线(蓝绿色的)有关:

多层感知机就是在原来多输出感知机的基础上增加了中间层,如下图所示:
课时44 反向传播算法-1_哔哩哔哩_bilibili

我们将前面的层次都盖住,从最后一层来看:
课时44 反向传播算法-1_哔哩哔哩_bilibili

这时O就成为了输入,根据多输出感知机的结论,只需要将x变为O,我们可以得到最后一层的计算公式,如下图:

为了是我们的公式更加简单,我们对公式进行了替换(只是改变了公式的表达形式,其内涵并没有改变),如下图所示:

分析求导过程,求导的时候记得我们求的时最后一层,并且注意各下角标的含义(都在深度学习pytorch------感知机(Perceptron)(持续更新)-CSDN博客说明):

求导结果:

总结一下感知机的问题:
课时44 反向传播算法-1_哔哩哔哩_bilibili

pytorch公式的推导到这里基本结束了。经过每一次的公式的推导,我们发现公式都是通过求导问题来分析的,其中不仅含有基本数学公式的求导,还联系到链式法则,如果高数学的还不错,我相信这些都不是问题。

在以后的实践,理解基本原理有助于我们更好的编写深度学习的代码。而且随着人工智能的发展,AI安全问题随之出现,想要做出更棒的智能产品,理解其内部原理,将会更好帮助我们的前进。

相关推荐
草莓熊Lotso4 小时前
Linux 文件描述符与重定向实战:从原理到 minishell 实现
android·linux·运维·服务器·数据库·c++·人工智能
Coder_Boy_5 小时前
技术发展的核心规律是「加法打底,减法优化,重构平衡」
人工智能·spring boot·spring·重构
会飞的老朱7 小时前
医药集团数智化转型,智能综合管理平台激活集团管理新效能
大数据·人工智能·oa协同办公
聆风吟º9 小时前
CANN runtime 实战指南:异构计算场景中运行时组件的部署、调优与扩展技巧
人工智能·神经网络·cann·异构计算
Codebee11 小时前
能力中心 (Agent SkillCenter):开启AI技能管理新时代
人工智能
聆风吟º12 小时前
CANN runtime 全链路拆解:AI 异构计算运行时的任务管理与功能适配技术路径
人工智能·深度学习·神经网络·cann
uesowys12 小时前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
AI_567812 小时前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
User_芊芊君子12 小时前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
智驱力人工智能12 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算