深度学习pytorch——多层感知机反向传播(持续更新)

在讲解多层感知机反向传播之前,先来回顾一下多输出感知机的问题,下图是一个多输出感知机模型:
课时44 反向传播算法-1_哔哩哔哩_bilibili

根据上一次的分析深度学习pytorch------感知机(Perceptron)(持续更新)-CSDN博客我们得出来了如下的结论,即损失对参数的导数只与这条线(蓝绿色的)有关:

多层感知机就是在原来多输出感知机的基础上增加了中间层,如下图所示:
课时44 反向传播算法-1_哔哩哔哩_bilibili

我们将前面的层次都盖住,从最后一层来看:
课时44 反向传播算法-1_哔哩哔哩_bilibili

这时O就成为了输入,根据多输出感知机的结论,只需要将x变为O,我们可以得到最后一层的计算公式,如下图:

为了是我们的公式更加简单,我们对公式进行了替换(只是改变了公式的表达形式,其内涵并没有改变),如下图所示:

分析求导过程,求导的时候记得我们求的时最后一层,并且注意各下角标的含义(都在深度学习pytorch------感知机(Perceptron)(持续更新)-CSDN博客说明):

求导结果:

总结一下感知机的问题:
课时44 反向传播算法-1_哔哩哔哩_bilibili

pytorch公式的推导到这里基本结束了。经过每一次的公式的推导,我们发现公式都是通过求导问题来分析的,其中不仅含有基本数学公式的求导,还联系到链式法则,如果高数学的还不错,我相信这些都不是问题。

在以后的实践,理解基本原理有助于我们更好的编写深度学习的代码。而且随着人工智能的发展,AI安全问题随之出现,想要做出更棒的智能产品,理解其内部原理,将会更好帮助我们的前进。

相关推荐
Echo``20 分钟前
3:OpenCV—视频播放
图像处理·人工智能·opencv·算法·机器学习·视觉检测·音视频
Douglassssssss22 分钟前
【深度学习】使用块的网络(VGG)
网络·人工智能·深度学习
okok__TXF24 分钟前
SpringBoot3+AI
java·人工智能·spring
SAP工博科技25 分钟前
如何提升新加坡SAP实施成功率?解答中企出海的“税务合规密码” | 工博科技SAP金牌服务商
人工智能·科技·制造
闭月之泪舞36 分钟前
OpenCv高阶(八)——摄像头调用、摄像头OCR
人工智能·opencv·ocr
終不似少年遊*1 小时前
【从基础到模型网络】深度学习-语义分割-ROI
人工智能·深度学习·卷积神经网络·语义分割·fcn·roi
Cchaofan1 小时前
lesson01-PyTorch初见(理论+代码实战)
人工智能·pytorch·python
小袁拒绝摆烂1 小时前
OpenCV-几何变化和图像形态学
人工智能·opencv·计算机视觉
摆烂仙君1 小时前
南京邮电大学金工实习答案
人工智能·深度学习·aigc
视觉语言导航2 小时前
中科院自动化研究所通用空中任务无人机!基于大模型的通用任务执行与自主飞行
人工智能·深度学习·无人机·具身智能