深度学习pytorch——多层感知机反向传播(持续更新)

在讲解多层感知机反向传播之前,先来回顾一下多输出感知机的问题,下图是一个多输出感知机模型:
课时44 反向传播算法-1_哔哩哔哩_bilibili

根据上一次的分析深度学习pytorch------感知机(Perceptron)(持续更新)-CSDN博客我们得出来了如下的结论,即损失对参数的导数只与这条线(蓝绿色的)有关:

多层感知机就是在原来多输出感知机的基础上增加了中间层,如下图所示:
课时44 反向传播算法-1_哔哩哔哩_bilibili

我们将前面的层次都盖住,从最后一层来看:
课时44 反向传播算法-1_哔哩哔哩_bilibili

这时O就成为了输入,根据多输出感知机的结论,只需要将x变为O,我们可以得到最后一层的计算公式,如下图:

为了是我们的公式更加简单,我们对公式进行了替换(只是改变了公式的表达形式,其内涵并没有改变),如下图所示:

分析求导过程,求导的时候记得我们求的时最后一层,并且注意各下角标的含义(都在深度学习pytorch------感知机(Perceptron)(持续更新)-CSDN博客说明):

求导结果:

总结一下感知机的问题:
课时44 反向传播算法-1_哔哩哔哩_bilibili

pytorch公式的推导到这里基本结束了。经过每一次的公式的推导,我们发现公式都是通过求导问题来分析的,其中不仅含有基本数学公式的求导,还联系到链式法则,如果高数学的还不错,我相信这些都不是问题。

在以后的实践,理解基本原理有助于我们更好的编写深度学习的代码。而且随着人工智能的发展,AI安全问题随之出现,想要做出更棒的智能产品,理解其内部原理,将会更好帮助我们的前进。

相关推荐
aspxiy6 小时前
知识求解器:教会大型语言模型从知识图谱中搜索领域知识
人工智能·语言模型·自然语言处理·知识图谱
八位数花园6 小时前
PyTorch-CUDA镜像支持Knowledge Graph Embedding吗?
pytorch·cuda·知识图谱嵌入
梦想是成为算法高手6 小时前
带你从入门到精通——知识图谱(一. 知识图谱入门)
人工智能·pytorch·python·深度学习·神经网络·知识图谱
沛沛老爹6 小时前
从Web到AI:行业专属Agent Skills生态系统技术演进实战
java·开发语言·前端·vue.js·人工智能·rag·企业转型
B站计算机毕业设计超人6 小时前
计算机毕业设计Python+大模型音乐推荐系统 音乐数据分析 音乐可视化 音乐爬虫 知识图谱 大数据毕业设计
人工智能·hadoop·爬虫·python·数据分析·知识图谱·课程设计
陈天伟教授7 小时前
人工智能应用-机器视觉:AI 鉴伪 02.虚假人脸生成
人工智能·神经网络·数码相机·生成对抗网络·dnn
可能是阿伦7 小时前
探索 cccc:一个面向工程协作的多代理协作内核
人工智能·低代码·ai·web3
棒棒的皮皮7 小时前
【深度学习】YOLO学习教程汇总
深度学习·学习·yolo·计算机视觉
jkyy20147 小时前
健康监测驾驶系统赋能:解锁新能源汽车健康出行新场景
大数据·人工智能·物联网·健康医疗