Emotion Prompt-LLM能够理解并能通过情感刺激得以增强

Large Language Models Understand and Can be Enhanced by Emotional Stimuli

情感智能对我们的日常行为和互动产生了显著的影响。尽管大型语言模型(LLMs)被视为向人工通用智能迈进的一大步,在许多任务中表现出色,但目前尚不清楚LLMs是否能真正理解心理情感刺激。理解和响应情感线索使人类在解决问题方面具有独特的优势。在这篇论文中,我们迈出了探索LLMs理解情感刺激能力的第一步。为此,我们首先对45个任务进行了自动实验,使用了各种LLMs,包括Flan-T5-Large、Vicuna、Llama 2、BLOOM、ChatGPT和GPT-4。我们的任务涵盖了确定性和生成性应用,代表了全面的评估场景。我们的自动实验表明,LLMs具有情感智能,并且可以通过情感提示(我们称之为"EmotionPrompt",它将原始提示与情感刺激结合起来)来提高其性能,例如在指令诱导任务中提高了8.00%的相对性能,在BIG-Bench中提高了115%。除了可以使用现有指标自动评估的确定性任务之外,我们还进行了106名参与者的人类研究,以评估使用普通和情感提示的生成任务的质量。我们的人类研究结果表明,EmotionPrompt显著提高了生成任务的性能(在性能、真实性和责任感指标上平均提高了10.9%)。我们提供了关于为什么EmotionPrompt对LLMs有效以及可能影响其性能的因素的深入讨论。我们认为,EmotionPrompt为探索跨学科社会科学知识,以促进人机LLMs交互,开辟了一条新的途径。

大型语言模型在各种应用中的表现展示了前所未有的性能。本文是首次研究,旨在评估和分析LLM如何理解情感智能,这是人类的关键特性。我们为这种分析设计了EmotionPrompt。我们在6个LLM上的45个任务的标准化评估显示了积极的结果:LLM可以理解和通过情感刺激得到增强。我们的人类研究还表明,通过情感智能增强的LLM可以达到更好的性能、真实性和责任感。

展望未来,我们看到LLM和心理学交汇处有许多开放问题和机遇。首先,尽管我们在本文中展示了一些注意力可视化,以理解EmotionPrompt成功的理由,但从心理学的根本层面和模型训练来看,仍有更多工作要做,例如预训练技术如何影响情感刺激的表现,如何通过将心理现象融入预训练来提高性能等。我们相信,更多的分析和理解可以帮助我们更好地理解LLM情感智能背后的"魔法"。其次,尽管本文得出结论LLM可以理解和通过情感智能得到增强,但实际上这与关于人类情感智能的现有研究相冲突。现有的心理学研究表明,人类的行为或态度可能受到情绪的影响,但他们的推理或认知能力不能简单地通过添加情感刺激来增强。然而,这种差异背后的奥秘仍然不清楚,我们留给未来的工作来找出人类和LLM情感智能之间的实际差异。

相关推荐
AI大模型团团3 分钟前
从基础概念到前沿应用了解机器学习
人工智能·python·随机森林·机器学习·ai·线性回归·llama
点我头像干啥9 分钟前
第8节:机器学习基础 - 监督学习概念
人工智能·神经网络·学习·机器学习
有Li11 分钟前
基于深度学习并利用时间信息在X射线血管造影中进行冠状动脉血管分割|文献速递-深度学习医疗AI最新文献
人工智能·深度学习
CodeSheep13 分钟前
稚晖君又添一员猛将!
人工智能·算法·程序员
陈明勇17 分钟前
三句话搞定周末出行攻略!我用 AI 生成一日游可视化页面,还能秒上线!
前端·人工智能·mcp
风靡晚19 分钟前
一种改进的CFAR算法用于目标检测(解决多目标掩蔽)
人工智能·算法·目标检测·目标跟踪·信息与通信·信号处理
Pocker_Spades_A25 分钟前
AI 对话高效输入指令攻略(二):关于豆包的指令
人工智能
马可露露26 分钟前
自动驾驶地图数据传输协议ADASIS v2
人工智能·机器学习·自动驾驶
Code_流苏41 分钟前
杰弗里·辛顿:深度学习教父
人工智能·深度学习·神经网络·反向传播算法·杰弗里·辛顿
八股文领域大手子44 分钟前
深入浅出 Redis:核心数据结构解析与应用场景Redis 数据结构
java·数据结构·数据库·人工智能·spring boot·redis·后端