bert-base-chinese另外的加载方法.txt

import os

os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'

import torch

from transformers import pipeline

pipe = pipeline("fill-mask", model="google-bert/bert-base-chinese")

from transformers import AutoTokenizer, AutoModelForMaskedLM

tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-chinese")

model = AutoModelForMaskedLM.from_pretrained("google-bert/bert-base-chinese")

input_text='bert-base-chinese该怎么用?'

inx_text=tokenizer.encode(input_text)

inv_text=tokenizer.convert_ids_to_tokens(inx_text)

with torch.no_grad():

output=model(torch.tensor([inx_text]))

print(type(output))

last_hidden=output['logits']

print(last_hidden.shape,last_hidden[0])# (1,9,21128)(batch_size,seq_len,d_model)

from transformers import AutoModelForQuestionAnswering

aq=AutoModelForQuestionAnswering.from_pretrained("google-bert/bert-base-chinese")

定义问题和上下文

question = "你好,请问今天天气怎么样?"

context = "今天是晴天,气温适中,非常适合户外活动。"

使用分词器对问题和上下文进行编码

inputs = tokenizer(question, context, return_tensors='pt', \

padding=True, truncation=True)

input_ids = inputs['input_ids']

attention_mask = inputs['attention_mask']

在Transformers库中,模型并不是通过数字本身来识别分割符的,

而是通过分词器(Tokenizer)对输入文本的处理来识别这些特殊标记。

在不计算梯度的情况下进行推理

with torch.no_grad():

aq_outputs =aq(input_ids, attention_mask=attention_mask)

start_inxes=aq_outputs['start_logits'][0]

end_inxes=aq_outputs['end_logits'][0]

print(len(start_inxes),len(end_inxes))

start=torch.argmax(start_inxes)

end=torch.argmax(end_inxes)

(question+context)[start:end]

相关推荐
B站计算机毕业设计超人几秒前
计算机毕业设计PySpark+Hive+Django小红书评论情感分析 小红书笔记可视化 小红书舆情分析预测系统 大数据毕业设计(源码+LW+PPT+讲解)
大数据·人工智能·hive·爬虫·python·spark·课程设计
roamingcode3 分钟前
我是如何 Vibe Coding,将 AI CLI 工具从 Node.js 迁移到 Rust 并成功发布的
人工智能·rust·node.js·github·claude·github copilot
下午写HelloWorld6 分钟前
生成对抗网络GAN的简要理解
人工智能·神经网络·生成对抗网络
Lethehong10 分钟前
探索高效工作流的秘密:GLM-4.7 与 Dify 平台深度集成实践
大数据·人工智能·算法
Yeats_Liao11 分钟前
微调决策树:何时使用Prompt Engineering,何时选择Fine-tuning?
前端·人工智能·深度学习·算法·决策树·机器学习·prompt
传说故事12 分钟前
【论文自动阅读】GREAT MARCH 100:100项细节导向任务用于评估具身AI agent
人工智能·具身智能
李昊哲小课15 分钟前
基于NLP的检索式聊天机器人
人工智能·自然语言处理·机器人
听麟17 分钟前
HarmonyOS 6.0+ PC端智能监控助手开发实战:摄像头联动与异常行为识别落地
人工智能·深度学习·华为·harmonyos
wasp52021 分钟前
【开源】Banana Slide:一个基于nano banana pro[特殊字符]的原生AI PPT生成应用,迈向真正的"Vibe PPT"
人工智能·开源
说私域22 分钟前
破局互联网产品开发困境:开源AI智能名片链动2+1模式S2B2C商城小程序的实践与启示
人工智能·小程序·开源·私域运营