bert-base-chinese另外的加载方法.txt

import os

os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'

import torch

from transformers import pipeline

pipe = pipeline("fill-mask", model="google-bert/bert-base-chinese")

from transformers import AutoTokenizer, AutoModelForMaskedLM

tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-chinese")

model = AutoModelForMaskedLM.from_pretrained("google-bert/bert-base-chinese")

input_text='bert-base-chinese该怎么用?'

inx_text=tokenizer.encode(input_text)

inv_text=tokenizer.convert_ids_to_tokens(inx_text)

with torch.no_grad():

output=model(torch.tensor([inx_text]))

print(type(output))

last_hidden=output['logits']

print(last_hidden.shape,last_hidden[0])# (1,9,21128)(batch_size,seq_len,d_model)

from transformers import AutoModelForQuestionAnswering

aq=AutoModelForQuestionAnswering.from_pretrained("google-bert/bert-base-chinese")

定义问题和上下文

question = "你好,请问今天天气怎么样?"

context = "今天是晴天,气温适中,非常适合户外活动。"

使用分词器对问题和上下文进行编码

inputs = tokenizer(question, context, return_tensors='pt', \

padding=True, truncation=True)

input_ids = inputs['input_ids']

attention_mask = inputs['attention_mask']

在Transformers库中,模型并不是通过数字本身来识别分割符的,

而是通过分词器(Tokenizer)对输入文本的处理来识别这些特殊标记。

在不计算梯度的情况下进行推理

with torch.no_grad():

aq_outputs =aq(input_ids, attention_mask=attention_mask)

start_inxes=aq_outputs['start_logits'][0]

end_inxes=aq_outputs['end_logits'][0]

print(len(start_inxes),len(end_inxes))

start=torch.argmax(start_inxes)

end=torch.argmax(end_inxes)

(question+context)[start:end]

相关推荐
AI视觉网奇18 分钟前
人脸生成3d模型 Era3D
人工智能·计算机视觉
call me by ur name21 分钟前
VLM--CLIP作分类任务的损失函数
人工智能·机器学习·分类
吃个糖糖36 分钟前
34 Opencv 自定义角点检测
人工智能·opencv·计算机视觉
禁默36 分钟前
2024年图像处理、多媒体技术与机器学习
图像处理·人工智能·microsoft
KeepThinking!42 分钟前
YOLO-World:Real-Time Open-Vocabulary Object Detection
人工智能·yolo·目标检测·多模态
AIGCmagic社区1 小时前
AI多模态技术介绍:理解多模态大语言模型的原理
人工智能·语言模型·自然语言处理
图王大胜1 小时前
模型 双螺旋(通俗解读)
人工智能·管理·系统科学·认知科学·生命科学·战略规划·通识科学
机器之心1 小时前
AAAI 2025|时间序列演进也是种扩散过程?基于移动自回归的时序扩散预测模型
人工智能·后端
dwjf3211 小时前
机器学习(四)-回归模型评估指标
人工智能·机器学习·线性回归
吕小明么1 小时前
OpenAI o3 “震撼” 发布后回归技术本身的审视与进一步思考
人工智能·深度学习·算法·aigc·agi