bert-base-chinese另外的加载方法.txt

import os

os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'

import torch

from transformers import pipeline

pipe = pipeline("fill-mask", model="google-bert/bert-base-chinese")

from transformers import AutoTokenizer, AutoModelForMaskedLM

tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-chinese")

model = AutoModelForMaskedLM.from_pretrained("google-bert/bert-base-chinese")

input_text='bert-base-chinese该怎么用?'

inx_text=tokenizer.encode(input_text)

inv_text=tokenizer.convert_ids_to_tokens(inx_text)

with torch.no_grad():

output=model(torch.tensor([inx_text]))

print(type(output))

last_hidden=output['logits']

print(last_hidden.shape,last_hidden[0])# (1,9,21128)(batch_size,seq_len,d_model)

from transformers import AutoModelForQuestionAnswering

aq=AutoModelForQuestionAnswering.from_pretrained("google-bert/bert-base-chinese")

定义问题和上下文

question = "你好,请问今天天气怎么样?"

context = "今天是晴天,气温适中,非常适合户外活动。"

使用分词器对问题和上下文进行编码

inputs = tokenizer(question, context, return_tensors='pt', \

padding=True, truncation=True)

input_ids = inputs['input_ids']

attention_mask = inputs['attention_mask']

在Transformers库中,模型并不是通过数字本身来识别分割符的,

而是通过分词器(Tokenizer)对输入文本的处理来识别这些特殊标记。

在不计算梯度的情况下进行推理

with torch.no_grad():

aq_outputs =aq(input_ids, attention_mask=attention_mask)

start_inxes=aq_outputs['start_logits'][0]

end_inxes=aq_outputs['end_logits'][0]

print(len(start_inxes),len(end_inxes))

start=torch.argmax(start_inxes)

end=torch.argmax(end_inxes)

(question+context)[start:end]

相关推荐
居7然7 小时前
ChatGPT是怎么学会接龙的?
深度学习·语言模型·chatgpt·性能优化·transformer
5Gcamera7 小时前
4G body camera BC310/BC310D user manual
人工智能·边缘计算·智能安全帽·执法记录仪·smarteye
爱喝可乐的老王7 小时前
机器学习中常用交叉验证总结
人工智能·机器学习
公链开发8 小时前
2026 Web3机构级风口:RWA Tokenization + ZK隐私系统定制开发全解析
人工智能·web3·区块链
wyw00008 小时前
目标检测之YOLO
人工智能·yolo·目标检测
发哥来了8 小时前
AI视频生成企业级方案选型指南:2025年核心能力与成本维度深度对比
大数据·人工智能
_codemonster8 小时前
强化学习入门到实战系列(四)马尔科夫决策过程
人工智能
北邮刘老师9 小时前
智能体治理:人工智能时代信息化系统的全新挑战与课题
大数据·人工智能·算法·机器学习·智能体互联网
laplace01239 小时前
第七章 构建自己的agent智能体框架
网络·人工智能·microsoft·agent
诗词在线9 小时前
中国古代诗词名句按主题分类有哪些?(爱国 / 思乡 / 送别)
人工智能·python·分类·数据挖掘