bert-base-chinese另外的加载方法.txt

import os

os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'

import torch

from transformers import pipeline

pipe = pipeline("fill-mask", model="google-bert/bert-base-chinese")

from transformers import AutoTokenizer, AutoModelForMaskedLM

tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-chinese")

model = AutoModelForMaskedLM.from_pretrained("google-bert/bert-base-chinese")

input_text='bert-base-chinese该怎么用?'

inx_text=tokenizer.encode(input_text)

inv_text=tokenizer.convert_ids_to_tokens(inx_text)

with torch.no_grad():

output=model(torch.tensor([inx_text]))

print(type(output))

last_hidden=output['logits']

print(last_hidden.shape,last_hidden[0])# (1,9,21128)(batch_size,seq_len,d_model)

from transformers import AutoModelForQuestionAnswering

aq=AutoModelForQuestionAnswering.from_pretrained("google-bert/bert-base-chinese")

定义问题和上下文

question = "你好,请问今天天气怎么样?"

context = "今天是晴天,气温适中,非常适合户外活动。"

使用分词器对问题和上下文进行编码

inputs = tokenizer(question, context, return_tensors='pt', \

padding=True, truncation=True)

input_ids = inputs['input_ids']

attention_mask = inputs['attention_mask']

在Transformers库中,模型并不是通过数字本身来识别分割符的,

而是通过分词器(Tokenizer)对输入文本的处理来识别这些特殊标记。

在不计算梯度的情况下进行推理

with torch.no_grad():

aq_outputs =aq(input_ids, attention_mask=attention_mask)

start_inxes=aq_outputs['start_logits'][0]

end_inxes=aq_outputs['end_logits'][0]

print(len(start_inxes),len(end_inxes))

start=torch.argmax(start_inxes)

end=torch.argmax(end_inxes)

(question+context)[start:end]

相关推荐
沃达德软件2 小时前
智慧警务图像融合大数据
大数据·图像处理·人工智能·目标检测·计算机视觉·目标跟踪
QxQ么么3 小时前
移远通信(桂林)26校招-助理AI算法工程师-面试纪录
人工智能·python·算法·面试
愤怒的可乐3 小时前
从零构建大模型智能体:统一消息格式,快速接入大语言模型
人工智能·语言模型·自然语言处理
每天一个java小知识5 小时前
AI Agent
人工智能
猫头虎5 小时前
如何解决 pip install 编译报错 fatal error: hdf5.h: No such file or directory(h5py)问题
人工智能·python·pycharm·开源·beautifulsoup·ai编程·pip
龙赤子5 小时前
人工智能AI的大框架
人工智能
比奥利奥还傲.5 小时前
本地+AI+大模型自由用!Cherry+Studio打破局域网限制
人工智能
雪碧聊技术5 小时前
深度学习、机器学习、人工智能三者的关系
人工智能·深度学习·机器学习
β添砖java5 小时前
机器学习初级
人工智能·机器学习
陈奕昆5 小时前
n8n实战营Day3:电商订单全流程自动化·需求分析与流程拆解
大数据·开发语言·人工智能·自动化·需求分析·n8n