bert-base-chinese另外的加载方法.txt

import os

os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'

import torch

from transformers import pipeline

pipe = pipeline("fill-mask", model="google-bert/bert-base-chinese")

from transformers import AutoTokenizer, AutoModelForMaskedLM

tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-chinese")

model = AutoModelForMaskedLM.from_pretrained("google-bert/bert-base-chinese")

input_text='bert-base-chinese该怎么用?'

inx_text=tokenizer.encode(input_text)

inv_text=tokenizer.convert_ids_to_tokens(inx_text)

with torch.no_grad():

output=model(torch.tensor([inx_text]))

print(type(output))

last_hidden=output['logits']

print(last_hidden.shape,last_hidden[0])# (1,9,21128)(batch_size,seq_len,d_model)

from transformers import AutoModelForQuestionAnswering

aq=AutoModelForQuestionAnswering.from_pretrained("google-bert/bert-base-chinese")

定义问题和上下文

question = "你好,请问今天天气怎么样?"

context = "今天是晴天,气温适中,非常适合户外活动。"

使用分词器对问题和上下文进行编码

inputs = tokenizer(question, context, return_tensors='pt', \

padding=True, truncation=True)

input_ids = inputs['input_ids']

attention_mask = inputs['attention_mask']

在Transformers库中,模型并不是通过数字本身来识别分割符的,

而是通过分词器(Tokenizer)对输入文本的处理来识别这些特殊标记。

在不计算梯度的情况下进行推理

with torch.no_grad():

aq_outputs =aq(input_ids, attention_mask=attention_mask)

start_inxes=aq_outputs['start_logits'][0]

end_inxes=aq_outputs['end_logits'][0]

print(len(start_inxes),len(end_inxes))

start=torch.argmax(start_inxes)

end=torch.argmax(end_inxes)

(question+context)[start:end]

相关推荐
中科米堆9 分钟前
中科米堆CASAIM自动化三维测量实现注塑模具快速尺寸测量
运维·人工智能·自动化
CoookeCola10 分钟前
Google Landmarks Dataset v2 (GLDv2):面向实例级识别与检索的500万图像,200k+类别大规模地标识别基准
图像处理·人工智能·学习·目标检测·计算机视觉·视觉检测
云青黛42 分钟前
轮廓系数(一个异型簇的分类标准)
人工智能·算法·机器学习
isyoungboy43 分钟前
PIL与OpenCV双线性插值实现差异导致模型精度不够踩坑
人工智能·opencv·计算机视觉
java1234_小锋44 分钟前
TensorFlow2 Python深度学习 - 卷积神经网络(CNN)介绍
python·深度学习·tensorflow·tensorflow2
java1234_小锋1 小时前
TensorFlow2 Python深度学习 - 循环神经网络(RNN)- 简介
python·深度学习·tensorflow·tensorflow2
云青黛1 小时前
肘部法找k
人工智能·算法·机器学习·聚类
IT_陈寒1 小时前
Java性能调优:从GC日志分析到实战优化的5个关键技巧,让你的应用快如闪电!
前端·人工智能·后端
盼小辉丶1 小时前
TensorFlow深度学习实战——节点分类
深度学习·分类·tensorflow·图神经网络
Hs_QY_FX1 小时前
Python 分类模型评估:从理论到实战(以信用卡欺诈检测为例)
人工智能·python·机器学习·数据挖掘·多分类评估