吴恩达2022机器学习专项课程(一) 3.4 成本函数的直观理解

问题预览

  1. 成本函数的目的是什么?
  2. 不同的w参数如何影响成本函数?
  3. 如何选择合适的成本函数?

解读

  • 成本函数:为了衡量参数w和b与训练数据的吻合程度。成本函数越小,w和b越合适。
  • 简化成本函数:为了方便理解成本函数,只需找到让成本函数最小化的w参数即可。
  • 不同的w参数
    • 图片解释:左侧图:横纵轴对应训练样本xy。红×:训练集的数据。右侧图:横轴对应w的值,纵轴对应成本函数的值。最下方公式:代入当前w,计算成本函数的值。
    • w=1 :粉色线条表示模型,将w的值代入成本函数,计算结果为0。表示当前参数w为1时,模型能够完美预测训练集的数据,没有误差。
    • w=0.5 :紫色线条表示w为0.5时模型的样子,当我们给定训练集里的x,通过模型预测出y,和真实的y(红叉对应的y)有差异,图里用蓝色竖线标记出了差异,此时计算出的成本函数的值为0.58,表示有误差。
    • w=0 :黄色线条表示模型的样子,当我们给定训练集里的x,通过模型预测出y,和真实的y差异更大了,此时计算出成本函数的值为2.3,误差比前两个w参数要大。
      w为其它值:通过设置不同的w,计算出不同的成本函数的值,成本函数与w的走势图如右图。
  • 选择合适的w参数:在上述示例中,最合适的w参数为1,因为它的成本函数值为0,是最小的。但是,这只是简化后的例子,我们还需要考虑参数b,下节课会细讲。

总结

成本函数的作用,用于衡量模型预测值y帽与真实值y之间的差异。

通过简化模型(只考虑参数w)以及设置不同的w参数,我们看到了w和成本函数之间的关系。

我们的目的,是为了最小化成本函数,以便找到最合适的模型参数w。

成本函数最小化,是为了确保模型的预测尽可能接近真实数据,从而提高模型的性能和可靠性。

相关推荐
亚里随笔18 分钟前
L0:让大模型成为通用智能体的强化学习新范式
人工智能·llm·大语言模型·rlhf
白杆杆红伞伞25 分钟前
T01_神经网络
人工智能·深度学习·神经网络
槑槑紫1 小时前
深度学习pytorch整体流程
人工智能·pytorch·深度学习
盼小辉丶1 小时前
TensorFlow深度学习实战——去噪自编码器详解与实现
人工智能·深度学习·tensorflow
胖达不服输1 小时前
「日拱一码」020 机器学习——数据处理
人工智能·python·机器学习·数据处理
吴佳浩2 小时前
Python入门指南-AI模型相似性检测方法:技术原理与实现
人工智能·python·llm
kebijuelun2 小时前
百度文心 4.5 大模型详解:ERNIE 4.5 Technical Report
人工智能·深度学习·百度·语言模型·自然语言处理·aigc
算家计算2 小时前
ComfyUI-v0.3.43本地部署教程:新增 Omnigen 2 支持,复杂图像任务一步到位!
人工智能·开源
新智元2 小时前
毕业 7 年,身价破亿!清北 AI 天团血洗硅谷,奥特曼被逼分天价股份
人工智能·openai
新智元3 小时前
刚刚,苹果大模型团队负责人叛逃 Meta!华人 AI 巨星 + 1,年薪飙至 9 位数
人工智能·openai