吴恩达2022机器学习专项课程(一) 3.4 成本函数的直观理解

问题预览

  1. 成本函数的目的是什么?
  2. 不同的w参数如何影响成本函数?
  3. 如何选择合适的成本函数?

解读

  • 成本函数:为了衡量参数w和b与训练数据的吻合程度。成本函数越小,w和b越合适。
  • 简化成本函数:为了方便理解成本函数,只需找到让成本函数最小化的w参数即可。
  • 不同的w参数
    • 图片解释:左侧图:横纵轴对应训练样本xy。红×:训练集的数据。右侧图:横轴对应w的值,纵轴对应成本函数的值。最下方公式:代入当前w,计算成本函数的值。
    • w=1 :粉色线条表示模型,将w的值代入成本函数,计算结果为0。表示当前参数w为1时,模型能够完美预测训练集的数据,没有误差。
    • w=0.5 :紫色线条表示w为0.5时模型的样子,当我们给定训练集里的x,通过模型预测出y,和真实的y(红叉对应的y)有差异,图里用蓝色竖线标记出了差异,此时计算出的成本函数的值为0.58,表示有误差。
    • w=0 :黄色线条表示模型的样子,当我们给定训练集里的x,通过模型预测出y,和真实的y差异更大了,此时计算出成本函数的值为2.3,误差比前两个w参数要大。
      w为其它值:通过设置不同的w,计算出不同的成本函数的值,成本函数与w的走势图如右图。
  • 选择合适的w参数:在上述示例中,最合适的w参数为1,因为它的成本函数值为0,是最小的。但是,这只是简化后的例子,我们还需要考虑参数b,下节课会细讲。

总结

成本函数的作用,用于衡量模型预测值y帽与真实值y之间的差异。

通过简化模型(只考虑参数w)以及设置不同的w参数,我们看到了w和成本函数之间的关系。

我们的目的,是为了最小化成本函数,以便找到最合适的模型参数w。

成本函数最小化,是为了确保模型的预测尽可能接近真实数据,从而提高模型的性能和可靠性。

相关推荐
shangjian0072 小时前
AI大模型-评价指标-相关术语
人工智能·算法
江河地笑3 小时前
opencv、cmake、vcpkg
人工智能·opencv·计算机视觉
海边夕阳20063 小时前
【每天一个AI小知识】:什么是卷积神经网络?
人工智能·经验分享·深度学习·神经网络·机器学习·cnn
一只会写代码的猫4 小时前
可持续发展中的绿色科技:推动未来的环保创新
大数据·人工智能
胡萝卜3.04 小时前
掌握C++ map:高效键值对操作指南
开发语言·数据结构·c++·人工智能·map
松岛雾奈.2305 小时前
机器学习--PCA降维算法
人工智能·算法·机器学习
5***79005 小时前
机器学习社区机器学习社区:推动技术进步与创新的引擎
人工智能·机器学习
物联网软硬件开发-轨物科技5 小时前
【轨物交流】海盐县组织部调研轨物科技 深化产学研用协同创新
人工智能·科技
Olafur_zbj5 小时前
【AI】矩阵、向量与乘法
人工智能·线性代数·矩阵
kk哥88995 小时前
印刷 / 表单处理专属!Acrobat 2025 AI 加持 PDF 编辑 + 批量处理效率翻倍,安装教程
人工智能