吴恩达2022机器学习专项课程(一) 3.4 成本函数的直观理解

问题预览

  1. 成本函数的目的是什么?
  2. 不同的w参数如何影响成本函数?
  3. 如何选择合适的成本函数?

解读

  • 成本函数:为了衡量参数w和b与训练数据的吻合程度。成本函数越小,w和b越合适。
  • 简化成本函数:为了方便理解成本函数,只需找到让成本函数最小化的w参数即可。
  • 不同的w参数
    • 图片解释:左侧图:横纵轴对应训练样本xy。红×:训练集的数据。右侧图:横轴对应w的值,纵轴对应成本函数的值。最下方公式:代入当前w,计算成本函数的值。
    • w=1 :粉色线条表示模型,将w的值代入成本函数,计算结果为0。表示当前参数w为1时,模型能够完美预测训练集的数据,没有误差。
    • w=0.5 :紫色线条表示w为0.5时模型的样子,当我们给定训练集里的x,通过模型预测出y,和真实的y(红叉对应的y)有差异,图里用蓝色竖线标记出了差异,此时计算出的成本函数的值为0.58,表示有误差。
    • w=0 :黄色线条表示模型的样子,当我们给定训练集里的x,通过模型预测出y,和真实的y差异更大了,此时计算出成本函数的值为2.3,误差比前两个w参数要大。
      w为其它值:通过设置不同的w,计算出不同的成本函数的值,成本函数与w的走势图如右图。
  • 选择合适的w参数:在上述示例中,最合适的w参数为1,因为它的成本函数值为0,是最小的。但是,这只是简化后的例子,我们还需要考虑参数b,下节课会细讲。

总结

成本函数的作用,用于衡量模型预测值y帽与真实值y之间的差异。

通过简化模型(只考虑参数w)以及设置不同的w参数,我们看到了w和成本函数之间的关系。

我们的目的,是为了最小化成本函数,以便找到最合适的模型参数w。

成本函数最小化,是为了确保模型的预测尽可能接近真实数据,从而提高模型的性能和可靠性。

相关推荐
七夜zippoe1 分钟前
轻量模型微调:LoRA、QLoRA实战对比与工程实践指南
人工智能·深度学习·算法·lora·qlora·量化训练
大模型真好玩4 分钟前
全网最通俗易懂DeepSeek-Math-V2与DeepSeek-V3.2核心知识点解析
人工智能·agent·deepseek
三金121384 分钟前
初学Prompt工程
大数据·人工智能·prompt
搬砖者(视觉算法工程师)5 分钟前
关于HBM(高带宽内存)的3D堆叠架构、先进封装技术以及在现代GPU、AI加速器上应用介绍
人工智能·芯片设计·存储
San30.5 分钟前
从 Mobile First 到 AI First:用 Python 和大模型让数据库“开口说话”
数据库·人工智能·python
工藤学编程6 分钟前
零基础学AI大模型之Milvus DML实战
人工智能·milvus
严文文-Chris6 分钟前
【非监督学习常见算法】
学习·算法·机器学习
玦尘、7 分钟前
《统计学习方法》第5章——决策树(下)【学习笔记】
决策树·机器学习·学习方法
大、男人9 分钟前
介绍下Medprompt
人工智能
红队it10 分钟前
【机器学习】python旅游数据分析可视化协同过滤算法推荐系统(完整系统源码+数据库+开发笔记+详细部署教程)✅
python·mysql·算法·机器学习·数据分析·旅游