吴恩达2022机器学习专项课程(一) 3.4 成本函数的直观理解

问题预览

  1. 成本函数的目的是什么?
  2. 不同的w参数如何影响成本函数?
  3. 如何选择合适的成本函数?

解读

  • 成本函数:为了衡量参数w和b与训练数据的吻合程度。成本函数越小,w和b越合适。
  • 简化成本函数:为了方便理解成本函数,只需找到让成本函数最小化的w参数即可。
  • 不同的w参数
    • 图片解释:左侧图:横纵轴对应训练样本xy。红×:训练集的数据。右侧图:横轴对应w的值,纵轴对应成本函数的值。最下方公式:代入当前w,计算成本函数的值。
    • w=1 :粉色线条表示模型,将w的值代入成本函数,计算结果为0。表示当前参数w为1时,模型能够完美预测训练集的数据,没有误差。
    • w=0.5 :紫色线条表示w为0.5时模型的样子,当我们给定训练集里的x,通过模型预测出y,和真实的y(红叉对应的y)有差异,图里用蓝色竖线标记出了差异,此时计算出的成本函数的值为0.58,表示有误差。
    • w=0 :黄色线条表示模型的样子,当我们给定训练集里的x,通过模型预测出y,和真实的y差异更大了,此时计算出成本函数的值为2.3,误差比前两个w参数要大。
      w为其它值:通过设置不同的w,计算出不同的成本函数的值,成本函数与w的走势图如右图。
  • 选择合适的w参数:在上述示例中,最合适的w参数为1,因为它的成本函数值为0,是最小的。但是,这只是简化后的例子,我们还需要考虑参数b,下节课会细讲。

总结

成本函数的作用,用于衡量模型预测值y帽与真实值y之间的差异。

通过简化模型(只考虑参数w)以及设置不同的w参数,我们看到了w和成本函数之间的关系。

我们的目的,是为了最小化成本函数,以便找到最合适的模型参数w。

成本函数最小化,是为了确保模型的预测尽可能接近真实数据,从而提高模型的性能和可靠性。

相关推荐
AI视觉网奇1 分钟前
数字人 语音驱动
人工智能·python
宁大小白1 分钟前
pythonstudy Day24
人工智能·机器学习
胡乱儿起个名2 分钟前
Embedding查表操作
python·机器学习·embedding
伯远医学2 分钟前
CUT&RUN
java·服务器·网络·人工智能·python·算法·eclipse
攻城狮7号3 分钟前
微软开源的Fara-7B 如何让你的电脑长出“双手”
人工智能·fara-7b·微软开源小型语言模型·端侧ai·ai控制电脑
艾莉丝努力练剑6 分钟前
【Python基础:语法第二课】Python 流程控制详解:条件语句 + 循环语句 + 人生重开模拟器实战
人工智能·爬虫·python·pycharm
Amctwd6 分钟前
【数据挖掘】用户行为分析中的应用与模型构建
人工智能·数据挖掘
智链RFID7 分钟前
信创RFID:涉密数据共享的“安全密钥”
网络·人工智能·安全
lisw058 分钟前
社区数据仓库的可持续连接性!
大数据·数据仓库·人工智能·机器学习