吴恩达2022机器学习专项课程(一) 3.4 成本函数的直观理解

问题预览

  1. 成本函数的目的是什么?
  2. 不同的w参数如何影响成本函数?
  3. 如何选择合适的成本函数?

解读

  • 成本函数:为了衡量参数w和b与训练数据的吻合程度。成本函数越小,w和b越合适。
  • 简化成本函数:为了方便理解成本函数,只需找到让成本函数最小化的w参数即可。
  • 不同的w参数
    • 图片解释:左侧图:横纵轴对应训练样本xy。红×:训练集的数据。右侧图:横轴对应w的值,纵轴对应成本函数的值。最下方公式:代入当前w,计算成本函数的值。
    • w=1 :粉色线条表示模型,将w的值代入成本函数,计算结果为0。表示当前参数w为1时,模型能够完美预测训练集的数据,没有误差。
    • w=0.5 :紫色线条表示w为0.5时模型的样子,当我们给定训练集里的x,通过模型预测出y,和真实的y(红叉对应的y)有差异,图里用蓝色竖线标记出了差异,此时计算出的成本函数的值为0.58,表示有误差。
    • w=0 :黄色线条表示模型的样子,当我们给定训练集里的x,通过模型预测出y,和真实的y差异更大了,此时计算出成本函数的值为2.3,误差比前两个w参数要大。
      w为其它值:通过设置不同的w,计算出不同的成本函数的值,成本函数与w的走势图如右图。
  • 选择合适的w参数:在上述示例中,最合适的w参数为1,因为它的成本函数值为0,是最小的。但是,这只是简化后的例子,我们还需要考虑参数b,下节课会细讲。

总结

成本函数的作用,用于衡量模型预测值y帽与真实值y之间的差异。

通过简化模型(只考虑参数w)以及设置不同的w参数,我们看到了w和成本函数之间的关系。

我们的目的,是为了最小化成本函数,以便找到最合适的模型参数w。

成本函数最小化,是为了确保模型的预测尽可能接近真实数据,从而提高模型的性能和可靠性。

相关推荐
文弱_书生2 分钟前
关于模型学习策略
人工智能·深度学习·神经网络
牛客企业服务20 分钟前
2026年AI面试布局:破解规模化招聘的效率困局
人工智能·面试·职场和发展
gorgeous(๑>؂<๑)22 分钟前
【北理工-AAAI26】MODA:首个无人机多光谱目标检测数据集
人工智能·目标检测·计算机视觉·目标跟踪·无人机
嵌入式的飞鱼36 分钟前
SD NAND 焊接避坑指南:LGA-8 封装手工焊接技巧与常见错误
人工智能·stm32·单片机·嵌入式硬件·tf卡
serve the people38 分钟前
tensorflow 零基础吃透:RaggedTensor 与其他张量类型的转换
人工智能·tensorflow·neo4j
serve the people1 小时前
tensorflow 核心解析:tf.RaggedTensorSpec 作用与参数说明
人工智能·python·tensorflow
yzx9910131 小时前
当AI握住方向盘:智能驾驶如何重新定义出行未来
人工智能
Sui_Network1 小时前
备受期待的 POP 射击游戏 XOCIETY 正式在 Epic Games Store 开启体验
人工智能·游戏·rpc·区块链·量子计算·graphql
漫长的~以后2 小时前
GPT-5.2深度拆解:多档位自适应架构如何重塑AI推理效率
人工智能·gpt·架构
爱笑的眼睛112 小时前
自动机器学习组件的深度解析:超越AutoML框架的底层架构
java·人工智能·python·ai