蓝桥--矩阵翻硬币--二分枚举

问题描述

小明先把硬币摆成了一个 n 行 m列的矩阵。随后,小明对每一个硬币分别进行一次 Q操作。

对第x行第y列的硬币进行Q操作的定义:将所有第 ix行,第 jy列的硬币进行翻转。其中i和j为任意使操作可行的正整数,行号和列号都是从1开始。

当小明对所有硬币都进行了一次 Q 操作后,他发现了一个奇迹------所有硬币均为正面朝上。

小明想知道最开始有多少枚硬币是反面朝上的。于是,他向他的好朋友小M寻求帮助。

聪明的小M告诉小明,只需要对所有硬币再进行一次Q操作,即可恢复到最开始的状态。然而小明很懒,不愿意照做。于是小明希望你给出他更好的方法。帮他计算出答案。

【数据格式】

输入数据包含一行,两个正整数 n m,含义见题目描述。输出一个正整数,表示最开始有多少枚硬币是反面朝上的。

【样例输入】

2 3

【样例输出】

1

【数据规模】

对于10%的数据,n、m <= 10^3;

对于20%的数据,n、m <= 10^7;

对于40%的数据,n、m <= 10^15;

对于10%的数据,n、m <= 10^1000(10的1000次方)。

==真因子==是指能整除一个给定数但不等于该数本身的因子,只有平方数的真因子个数为奇数

说人话

  • Q操作:将x的倍数行和y的倍数行反转
  • 一开始反面朝上的硬币数量一定是经历了奇数次反转的那些硬币,即 硬币只有被翻动奇数次才会有效果
  • 对于(10,5)处的硬币:行的真因子:(1,10,2,5),列的真因子(1,5),所以一共会被翻4*2次
  • 翻奇数次的前提是:行列真因子之积为奇数,即他们全是平方数,问题转化为寻找矩阵中下标均为平方数的元素个数

Try1 找n以内平方数的个数

cpp 复制代码
def f(n): #运行超时
#   # 返回n以内平方数的个数
#   cnt = 0
#   for i in range(1,n+1):
#     if(n**0.5).is_integer():
#       # 平方数开根号一定为整数
#       cnt+=1
#   return cnt
cpp 复制代码
def f1(n):#通过10%
#   cnt1 =0
#   for i in range(1,n+1):
#     if math.sqrt(i).is_integer():
#       cnt1 += 1
#   return cnt1  
# print(f1(n)*f1(m))

try2由于遍历的数目太大导致超时,所以优化算法,用二分枚举

枚举n以内平方小于n的个数,非平方的因子数是成对出现的,只出现在前半部分,所以mid =(l+r)//2+1(+1是向上取整,防止错过平方数),最终的l代表有几组因子(翻动了几次),由于最终态为全部正面朝上,所以初态正面朝下的个数就是?????

cpp 复制代码
def number(x): #二分枚举 找平方不大于x的个数。100%通过
  left=1    #因为真因子1,a1 b1,a2 b2,。。。k(k为开方数),
  # 所以平方不大于x就表示a1,a2。。这些因子
  right=x
  while left<right:
    mid=(left+right)//2+1 #向上取整 加1是表示看看后一位是否为平方数
    if mid**2>x:
      right=mid-1
    else:
      left=mid
  return left
print(number(n)*number(m))
cpp 复制代码
import os
import sys
import math
# Q操作:将x的倍数行和y的倍数行反转
# 对于(10,5)处的硬币:
# 行的真因子:(1,10,2,5),列的真因子(1,5),所以一共会被翻4*2次
# 真因子是指能整除一个给定数但不等于该数本身的因子,只有平方数的真因子个数为奇数
# 硬币只有被翻动奇数次才会有效果
# 翻奇数次的前提是:行列真因子之积为奇数,即他们全是平方数
# 问题转化为寻找矩阵中下标均为平方数的元素个数
n,m = map(int,input().split())

# def f(n): #运行超时
#   # 返回n以内平方数的个数
#   cnt = 0
#   for i in range(1,n+1):
#     if(n**0.5).is_integer():
#       # 平方数开根号一定为整数
#       cnt+=1
#   return cnt
# def f1(n):#通过10%
#   cnt1 =0
#   for i in range(1,n+1):
#     if math.sqrt(i).is_integer():
#       cnt1 += 1
#   return cnt1  
# print(f1(n)*f1(m))


def number(x): #二分枚举 找平方不大于x的个数。100%通过
  left=1    #因为真因子1,a1 b1,a2 b2,。。。k(k为开方数),
  # 所以平方不大于x就表示a1,a2。。这些因子
  right=x
  while left<right:
    mid=(left+right)//2+1 #向上取整 加1是表示看看后一位是否为平方数
    if mid**2>x:
      right=mid-1
    else:
      left=mid
  return left
print(number(n)*number(m))
相关推荐
KoiHeng2 小时前
部分排序算法的Java模拟实现(复习向,非0基础)
java·算法·排序算法
艾莉丝努力练剑9 小时前
【数据结构与算法】数据结构初阶:详解顺序表和链表(四)——单链表(下)
c语言·开发语言·数据结构·学习·算法·链表
yngsqq10 小时前
移动碰撞法 ——套料排版算法——CAD c#
算法
秋说11 小时前
【PTA数据结构 | C语言版】根据层序序列重构二叉树
c语言·数据结构·算法
秋说12 小时前
【PTA数据结构 | C语言版】前序遍历二叉树
c语言·数据结构·算法
会唱歌的小黄李13 小时前
【算法】贪心算法:最大数C++
c++·算法·贪心算法
NuyoahC13 小时前
笔试——Day8
c++·算法·笔试
墨染点香13 小时前
LeetCode Hot100 【1.两数之和、2.两数相加、3.无重复字符的最长子串】
算法·leetcode·职场和发展
秋说14 小时前
【PTA数据结构 | C语言版】二叉树层序序列化
c语言·数据结构·算法
地平线开发者14 小时前
开发者说|Aux-Think:为什么测试时推理反而让机器人「误入歧途」?
算法·自动驾驶