OpenCV基于阈值的分割技术详细介绍

OpenCV 提供了基于阈值的分割技术,这是一种简单且常用的图像分割方法,其基本思想是根据像素的灰度值将图像分为不同的区域。下面详细介绍了 OpenCV 中基于阈值的分割技术:

  1. 全局阈值分割(Global Thresholding)

    • 在全局阈值分割中,选择一个固定的阈值,将图像中的像素分为两类:一类是大于阈值的像素,另一类是小于等于阈值的像素。
    • OpenCV 中的 cv2.threshold() 函数可用于执行全局阈值分割。你可以选择不同的阈值类型(如二进制阈值、反二进制阈值、截断阈值等)和阈值的取值。
    • 示例代码:

    import cv2

    读取图像

    image = cv2.imread('image.jpg', cv2.IMREAD_GRAYSCALE)

    全局阈值分割

    _, binary_image = cv2.threshold(image, 127, 255, cv2.THRESH_BINARY)

    显示分割结果

    cv2.imshow('Binary Image', binary_image)
    cv2.waitKey(0)
    cv2.destroyAllWindows()

2.自适应阈值分割(Adaptive Thresholding)

  • 自适应阈值分割是根据图像局部区域的灰度值动态地选择阈值进行分割。

  • 该方法可以处理图像中不同区域的光照不均匀或对比度不一致的情况。

  • OpenCV 中的 cv2.adaptiveThreshold() 函数可用于执行自适应阈值分割。你需要指定分割方法、邻域大小和常数等参数。

  • 示例代码:

    import cv2

    读取图像

    image = cv2.imread('image.jpg', cv2.IMREAD_GRAYSCALE)

    自适应阈值分割

    binary_image = cv2.adaptiveThreshold(image, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 11, 2)

    显示分割结果

    cv2.imshow('Adaptive Binary Image', binary_image)
    cv2.waitKey(0)
    cv2.destroyAllWindows()

3、Otsu's 二值化(Otsu's Binarization)

  • Otsu's 方法是一种自动选择阈值的技术,它能够找到一个最优阈值,使得分割后的两个类别之间的类内方差最小或类间方差最大。

  • OpenCV 中的 cv2.threshold() 函数结合 cv2.THRESH_OTSU 标志可以实现 Otsu's 二值化。

  • 示例代码:

    import cv2

    读取图像

    image = cv2.imread('image.jpg', cv2.IMREAD_GRAYSCALE)

    Otsu's 二值化

    _, binary_image = cv2.threshold(image, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)

    显示分割结果

    cv2.imshow('Otsu Binary Image', binary_image)
    cv2.waitKey(0)
    cv2.destroyAllWindows()

相关推荐
Struart_R3 分钟前
LVSM: A LARGE VIEW SYNTHESIS MODEL WITH MINIMAL 3D INDUCTIVE BIAS 论文解读
人工智能·3d·transformer·三维重建
lucy153027510794 分钟前
【青牛科技】GC5931:工业风扇驱动芯片的卓越替代者
人工智能·科技·单片机·嵌入式硬件·算法·机器学习
jndingxin25 分钟前
OpenCV相机标定与3D重建(1)概述
数码相机·opencv·3d
幻风_huanfeng30 分钟前
线性代数中的核心数学知识
人工智能·机器学习
volcanical38 分钟前
LangGPT结构化提示词编写实践
人工智能
weyson1 小时前
CSharp OpenAI
人工智能·语言模型·chatgpt·openai
RestCloud1 小时前
ETLCloud异常问题分析ai功能
人工智能·ai·数据分析·etl·数据集成工具·数据异常
IT古董2 小时前
【机器学习】决定系数(R²:Coefficient of Determination)
人工智能·python·机器学习
鲜枣课堂2 小时前
5G-A如何与AI融合发展?华为MBBF2024给出解答
人工智能·5g·华为
武子康3 小时前
大数据-213 数据挖掘 机器学习理论 - KMeans Python 实现 距离计算函数 质心函数 聚类函数
大数据·人工智能·python·机器学习·数据挖掘·scikit-learn·kmeans