OpenCV基于阈值的分割技术详细介绍

OpenCV 提供了基于阈值的分割技术,这是一种简单且常用的图像分割方法,其基本思想是根据像素的灰度值将图像分为不同的区域。下面详细介绍了 OpenCV 中基于阈值的分割技术:

  1. 全局阈值分割(Global Thresholding)

    • 在全局阈值分割中,选择一个固定的阈值,将图像中的像素分为两类:一类是大于阈值的像素,另一类是小于等于阈值的像素。
    • OpenCV 中的 cv2.threshold() 函数可用于执行全局阈值分割。你可以选择不同的阈值类型(如二进制阈值、反二进制阈值、截断阈值等)和阈值的取值。
    • 示例代码:

    import cv2

    读取图像

    image = cv2.imread('image.jpg', cv2.IMREAD_GRAYSCALE)

    全局阈值分割

    _, binary_image = cv2.threshold(image, 127, 255, cv2.THRESH_BINARY)

    显示分割结果

    cv2.imshow('Binary Image', binary_image)
    cv2.waitKey(0)
    cv2.destroyAllWindows()

2.自适应阈值分割(Adaptive Thresholding)

  • 自适应阈值分割是根据图像局部区域的灰度值动态地选择阈值进行分割。

  • 该方法可以处理图像中不同区域的光照不均匀或对比度不一致的情况。

  • OpenCV 中的 cv2.adaptiveThreshold() 函数可用于执行自适应阈值分割。你需要指定分割方法、邻域大小和常数等参数。

  • 示例代码:

    import cv2

    读取图像

    image = cv2.imread('image.jpg', cv2.IMREAD_GRAYSCALE)

    自适应阈值分割

    binary_image = cv2.adaptiveThreshold(image, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 11, 2)

    显示分割结果

    cv2.imshow('Adaptive Binary Image', binary_image)
    cv2.waitKey(0)
    cv2.destroyAllWindows()

3、Otsu's 二值化(Otsu's Binarization)

  • Otsu's 方法是一种自动选择阈值的技术,它能够找到一个最优阈值,使得分割后的两个类别之间的类内方差最小或类间方差最大。

  • OpenCV 中的 cv2.threshold() 函数结合 cv2.THRESH_OTSU 标志可以实现 Otsu's 二值化。

  • 示例代码:

    import cv2

    读取图像

    image = cv2.imread('image.jpg', cv2.IMREAD_GRAYSCALE)

    Otsu's 二值化

    _, binary_image = cv2.threshold(image, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)

    显示分割结果

    cv2.imshow('Otsu Binary Image', binary_image)
    cv2.waitKey(0)
    cv2.destroyAllWindows()

相关推荐
刀客1231 小时前
python3+TensorFlow 2.x(四)反向传播
人工智能·python·tensorflow
SpikeKing1 小时前
LLM - 大模型 ScallingLaws 的设计 100B 预训练方案(PLM) 教程(5)
人工智能·llm·预训练·scalinglaws·100b·deepnorm·egs
小枫@码1 小时前
免费GPU算力,不花钱部署DeepSeek-R1
人工智能·语言模型
liruiqiang051 小时前
机器学习 - 初学者需要弄懂的一些线性代数的概念
人工智能·线性代数·机器学习·线性回归
Icomi_1 小时前
【外文原版书阅读】《机器学习前置知识》1.线性代数的重要性,初识向量以及向量加法
c语言·c++·人工智能·深度学习·神经网络·机器学习·计算机视觉
微学AI1 小时前
GPU算力平台|在GPU算力平台部署可图大模型Kolors的应用实战教程
人工智能·大模型·llm·gpu算力
西猫雷婶1 小时前
python学opencv|读取图像(四十六)使用cv2.bitwise_or()函数实现图像按位或运算
人工智能·opencv·计算机视觉
IT古董1 小时前
【深度学习】常见模型-生成对抗网络(Generative Adversarial Network, GAN)
人工智能·深度学习·生成对抗网络
Jackilina_Stone1 小时前
【论文阅读笔记】“万字”关于深度学习的图像和视频阴影检测、去除和生成的综述笔记 | 2024.9.3
论文阅读·人工智能·笔记·深度学习·ai
远洋录2 小时前
AI Agent的安全实践:权限控制与数据保护
人工智能·ai·ai agent