OpenCV基于阈值的分割技术详细介绍

OpenCV 提供了基于阈值的分割技术,这是一种简单且常用的图像分割方法,其基本思想是根据像素的灰度值将图像分为不同的区域。下面详细介绍了 OpenCV 中基于阈值的分割技术:

  1. 全局阈值分割(Global Thresholding)

    • 在全局阈值分割中,选择一个固定的阈值,将图像中的像素分为两类:一类是大于阈值的像素,另一类是小于等于阈值的像素。
    • OpenCV 中的 cv2.threshold() 函数可用于执行全局阈值分割。你可以选择不同的阈值类型(如二进制阈值、反二进制阈值、截断阈值等)和阈值的取值。
    • 示例代码:

    import cv2

    读取图像

    image = cv2.imread('image.jpg', cv2.IMREAD_GRAYSCALE)

    全局阈值分割

    _, binary_image = cv2.threshold(image, 127, 255, cv2.THRESH_BINARY)

    显示分割结果

    cv2.imshow('Binary Image', binary_image)
    cv2.waitKey(0)
    cv2.destroyAllWindows()

2.自适应阈值分割(Adaptive Thresholding)

  • 自适应阈值分割是根据图像局部区域的灰度值动态地选择阈值进行分割。

  • 该方法可以处理图像中不同区域的光照不均匀或对比度不一致的情况。

  • OpenCV 中的 cv2.adaptiveThreshold() 函数可用于执行自适应阈值分割。你需要指定分割方法、邻域大小和常数等参数。

  • 示例代码:

    import cv2

    读取图像

    image = cv2.imread('image.jpg', cv2.IMREAD_GRAYSCALE)

    自适应阈值分割

    binary_image = cv2.adaptiveThreshold(image, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 11, 2)

    显示分割结果

    cv2.imshow('Adaptive Binary Image', binary_image)
    cv2.waitKey(0)
    cv2.destroyAllWindows()

3、Otsu's 二值化(Otsu's Binarization)

  • Otsu's 方法是一种自动选择阈值的技术,它能够找到一个最优阈值,使得分割后的两个类别之间的类内方差最小或类间方差最大。

  • OpenCV 中的 cv2.threshold() 函数结合 cv2.THRESH_OTSU 标志可以实现 Otsu's 二值化。

  • 示例代码:

    import cv2

    读取图像

    image = cv2.imread('image.jpg', cv2.IMREAD_GRAYSCALE)

    Otsu's 二值化

    _, binary_image = cv2.threshold(image, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)

    显示分割结果

    cv2.imshow('Otsu Binary Image', binary_image)
    cv2.waitKey(0)
    cv2.destroyAllWindows()

相关推荐
lucky_lyovo3 小时前
自然语言处理NLP---预训练模型与 BERT
人工智能·自然语言处理·bert
fantasy_arch3 小时前
pytorch例子计算两张图相似度
人工智能·pytorch·python
AndrewHZ4 小时前
【3D重建技术】如何基于遥感图像和DEM等数据进行城市级高精度三维重建?
图像处理·人工智能·深度学习·3d·dem·遥感图像·3d重建
飞哥数智坊5 小时前
Coze实战第18讲:Coze+计划任务,我终于实现了企微资讯简报的定时推送
人工智能·coze·trae
Code_流苏5 小时前
AI热点周报(8.10~8.16):AI界“冰火两重天“,GPT-5陷入热议,DeepSeek R2模型训练受阻?
人工智能·gpt·gpt5·deepseek r2·ai热点·本周周报
赴3355 小时前
矿物分类案列 (一)六种方法对数据的填充
人工智能·python·机器学习·分类·数据挖掘·sklearn·矿物分类
大模型真好玩5 小时前
一文深度解析OpenAI近期发布系列大模型:意欲一统大模型江湖?
人工智能·python·mcp
双翌视觉5 小时前
工业视觉检测中的常见的四种打光方式
人工智能·计算机视觉·视觉检测
念念01075 小时前
基于MATLAB多智能体强化学习的出租车资源配置优化系统设计与实现
大数据·人工智能·matlab
nonono6 小时前
深度学习——常见的神经网络
人工智能·深度学习·神经网络