OpenCV基于阈值的分割技术详细介绍

OpenCV 提供了基于阈值的分割技术,这是一种简单且常用的图像分割方法,其基本思想是根据像素的灰度值将图像分为不同的区域。下面详细介绍了 OpenCV 中基于阈值的分割技术:

  1. 全局阈值分割(Global Thresholding)

    • 在全局阈值分割中,选择一个固定的阈值,将图像中的像素分为两类:一类是大于阈值的像素,另一类是小于等于阈值的像素。
    • OpenCV 中的 cv2.threshold() 函数可用于执行全局阈值分割。你可以选择不同的阈值类型(如二进制阈值、反二进制阈值、截断阈值等)和阈值的取值。
    • 示例代码:

    import cv2

    读取图像

    image = cv2.imread('image.jpg', cv2.IMREAD_GRAYSCALE)

    全局阈值分割

    _, binary_image = cv2.threshold(image, 127, 255, cv2.THRESH_BINARY)

    显示分割结果

    cv2.imshow('Binary Image', binary_image)
    cv2.waitKey(0)
    cv2.destroyAllWindows()

2.自适应阈值分割(Adaptive Thresholding)

  • 自适应阈值分割是根据图像局部区域的灰度值动态地选择阈值进行分割。

  • 该方法可以处理图像中不同区域的光照不均匀或对比度不一致的情况。

  • OpenCV 中的 cv2.adaptiveThreshold() 函数可用于执行自适应阈值分割。你需要指定分割方法、邻域大小和常数等参数。

  • 示例代码:

    import cv2

    读取图像

    image = cv2.imread('image.jpg', cv2.IMREAD_GRAYSCALE)

    自适应阈值分割

    binary_image = cv2.adaptiveThreshold(image, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 11, 2)

    显示分割结果

    cv2.imshow('Adaptive Binary Image', binary_image)
    cv2.waitKey(0)
    cv2.destroyAllWindows()

3、Otsu's 二值化(Otsu's Binarization)

  • Otsu's 方法是一种自动选择阈值的技术,它能够找到一个最优阈值,使得分割后的两个类别之间的类内方差最小或类间方差最大。

  • OpenCV 中的 cv2.threshold() 函数结合 cv2.THRESH_OTSU 标志可以实现 Otsu's 二值化。

  • 示例代码:

    import cv2

    读取图像

    image = cv2.imread('image.jpg', cv2.IMREAD_GRAYSCALE)

    Otsu's 二值化

    _, binary_image = cv2.threshold(image, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)

    显示分割结果

    cv2.imshow('Otsu Binary Image', binary_image)
    cv2.waitKey(0)
    cv2.destroyAllWindows()

相关推荐
SpikeKing5 分钟前
LLM - LlamaFactory 的大模型推理 踩坑记录
人工智能·llm·llamafactory
marteker10 分钟前
年度峰会上,抖音依靠人工智能和搜索功能吸引广告主
人工智能·搜索引擎
飞哥数智坊15 分钟前
AI编程实战:生成结果不合心意,1个简单思路帮你破解
人工智能·cursor
华清远见成都中心23 分钟前
大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计
人工智能·缓存·语言模型
hao_wujing31 分钟前
基于梯度的中毒攻击
大数据·人工智能
Lethehong2 小时前
Gemini 2.5 Pro (0605版本) 深度测评与体验指南
人工智能·chatgpt·googlecloud
全栈小52 小时前
【AI】从0开始玩转混元3D⼤模型,如何让一张静态实物图片一键转为3D实物图,大模型都表示服了,超级简单易上手,快来试试!
人工智能·3d·腾讯·混元达3d大模型·腾讯混元3d大模型
Bwcx_lzp2 小时前
MCP和Function Calling
人工智能·笔记
YYXZZ。。4 小时前
PyTorch——搭建小实战和Sequential的使用(7)
人工智能·pytorch·python
四川兔兔4 小时前
pytorch 与 张量的处理
人工智能·pytorch·python