AI模型(五)In-context learning上下文学习

上下文学习In-context learning

  1. 应用大语言模型要从传统机器学习思维切换为上下文学习的思路
  2. 上下文学习包括Zero-shot learning 和 Few-shot Learning 两者并无明显界限,可以根据实际需要灵活运用
  • Zero-shot learning 只是描述问题,不是传统的机器学习喂大量的数据
  • Few-shot learning 只是给出简短的几个示例,让大语言模型按照例子出

Zero-shot learning

  • 意图识别
python 复制代码
import openai
def recognize_intent(input):
    response = openai.ChatCompletion.create(
        engine=deployment, # engine = "deployment_name".
        temperature = 0,
        messages=[
            {"role": "system", "content": """
              Recognize the intent from the user's input and format output as JSON string. 
            The output JSON string includes: "intention", "paramters" """},
            {"role": "user", "content": input}
        ]
      )
    return response.choices[0].message.content
python 复制代码
print(recognize_intent("订8月19日北京到上海的飞机"))


{"intention": "book_flight", "parameters": {"date": "8月19日", "departure": "北京", "destination": "上海"}}
  • 情感分类
python 复制代码
import openai

def classify_sentiment(input):
    response = openai.ChatCompletion.create(
        engine=deployment, # engine = "deployment_name".
        messages=[
            {"role": "system", "content": """
             根据给定文字所表达的情感,将文字分为三类:正面 ,中立, 负面。请将用户给定的文字进行分类,并输出分类。
             """},   
            {"role": "user", "content": input}
        ],
        temperature = 0.9, 
        max_tokens = 200
      )
    return response.choices[0].message.content

Few-shot Learning

python 复制代码
import openai
def book_flight(input):
    response = openai.ChatCompletion.create(
        engine=deployment, # engine = "deployment_name".
        temperature = 0,
        messages=[
            {"role": "system", "content": """
              通过用户描述,提取航班预订信息并以JSON格式输出. 
              以下是一些示例:
              示例1
              输入: "订8月9日上海到北京的航班,上午出发"
              输出:"{"date":"0809","dispatch_time":"6-12","from":"shanghai","to":"beijing"}"
              
              示例2
              输入: "订8月9日上海到北京的航班,下午出发"
              输出:"{"date":"0809","dispatch_time":"12-18","from":"shanghai","to":"beijing"}"
              
              示例3
              输入: "订8月9日上海到北京的航班,晚上出发"
              输出:"{"date":"0809","dispatch_time":"18-24","from":"shanghai","to":"beijing"}"
              
              示例4
              输入: "订8月9日上海到北京的航班"
              输出:"{"date":"0809","dispatch_time":"unknown","from":"shanghai","to":"beijing"}"
              """},
            {"role": "user", "content": input}
        ]
      )
    return response.choices[0].message.content

ReAct Agent

  • 学会ai思考的过程,提问可以遵循这样的提
python 复制代码
import openai
tool = """
1 tool: python_interpreter, description: use it to execute python code
2 tool: web_access, description: use it to get realtime info, input is the question or query 
"""

react_prompt = f"""
Try your best to anwser user's question, and use the following format:

Question: the input question you must answer

Thought: you should always think about what to do

Action: the action to take, should use one of tools in the given tool list:

[{tool}]

Action Input: the input to the action

Here, you should pause the process and return to wait the outside observation. 

Observation: the result of the action
... (this Thought/Action/Action Input/Observation can repeat N times)

Thought: I now know the final answer

Final Answer: the final answer to the original input question
"""

def react_demo(request):
    response = openai.ChatCompletion.create(
        engine=deployment, # engine = "deployment_name".
        temperature = 0,
        messages=[
            {"role": "system", "content": react_prompt,
            },
            {"role": "user", "content": request}
        ]
      )
    print(response.choices[0].message.content)
python 复制代码
print(react_demo("今天北京适合穿什么?"))
python 复制代码
# run the web_access tool to get the Beijing's weather today. For example, 
weather = "The weather today in Beijing is 33°C, with 0% precipitation, 31% humidity, and a wind speed of 4 mph."

next_prompt = """
Question: 今天北京适合穿什么?

Thought: I need to check the current weather in Beijing to give a proper clothing suggestion.

Action: web_access

Action Input: 今天北京天气如何?

Observation: """ + weather

print(react_demo(next_prompt))

文本向量化embedding

python 复制代码
from langchain.embeddings.openai import OpenAIEmbeddings
# embedding = OpenAIEmbeddings() #如果直接使用OpenAI的GPT服务
embedding = OpenAIEmbeddings(deployment=embedding_deployment) #deployment是你在Azure中的 embedding 模型的部署名字
sentence1 = "我是一名软件工程师"
sentence2 = "小张从事法律工作"
sentence3 = "我是一名程序员"

embedding1 = embedding.embed_query(sentence1)
embedding2 = embedding.embed_query(sentence2)
embedding3 = embedding.embed_query(sentence3)
  • 用点集衡量向量之间的距离
python 复制代码
import numpy as np
print(np.dot(embedding1,embedding2))
print(np.dot(embedding2,embedding3))
print(np.dot(embedding1,embedding3))

0.7987662070931474 0.7992461569419606 0.9592105615669977

处理大文本

思路

    1. 把文章切割部分,分别向量化
    1. 在用用户给定的关键词,用 numpy 的点集 dot,查找计算关键词相似的段落
    1. 再把段落交给gpt,总结出通顺的话

做法

  • 向量化
python 复制代码
from langchain.embeddings.openai import OpenAIEmbeddings

def embed(chunks): 
    # embedding = OpenAIEmbeddings()#如果直接使用OpenAI的GPT服务
    embedding = OpenAIEmbeddings(deployment=embedding_deployment)
    return [embedding.embed_query(chunk) for chunk in chunks]
        
        

chunks = split_file_into_chunks("spotmax_intro.txt",100)
embeddeds = embed(chunks)
  • 向量检索
python 复制代码
def find_k_largest_indices(input_list, k):
    sorted_indices = sorted(range(len(input_list)), key=lambda i: input_list[i], reverse=True)
    print(input_list)
    print(sorted_indices)
    return sorted_indices[:k]

def search(chunks,embeddeds,top_k, txt):
    embedding = OpenAIEmbeddings(deployment="embedding",chunk_size=1)
    embedded_txt = embedding.embed_query(txt)
    distances = [np.dot(embedded_txt,embedded) for embedded in embeddeds]
    ret_idx = find_k_largest_indices(distances, top_k)
    return [chunks[i] for i in ret_idx]
  • 使用
python 复制代码
search(chunks,embeddeds,2, "提高系统可用性")
  • gpt总结
python 复制代码
import openai
import numpy as np
def anwser_question_with_doc(question, chunks, embeddeds):
    relevent_chunks = search(chunks,embeddeds,2, question)
    prompt = """
    仅通过总结以下的文字片段回答用户问题, 注意保持回答的语言通顺(字数在30字以内)
    --- 
    """
    for rchunks in relevent_chunks:
        prompt = prompt + "\n'" + rchunks + "'"
    
    response = openai.ChatCompletion.create(
    engine=deployment, # engine = "deployment_name".
    messages=[
            {"role": "system", "content": prompt},   
            {"role": "user", "content": question}
        ],
        temperature = 0.9, 
        max_tokens = 200
   )
    return response.choices[0].message.content
  • 最终使用
python 复制代码
print(anwser_question_with_doc("如何提高可用性", chunks,embeddeds))

用 LangChain 连接内部数据和大模型

向量数据库 Chroma

python 复制代码
!pip install chromadb
  • 加载文档 (Document Loader)
python 复制代码
from langchain.document_loaders import DirectoryLoader
loader = DirectoryLoader('./', glob="spotmax_intro.txt")
docs = loader.load()
python 复制代码
pip install pypdf
python 复制代码
from langchain.document_loaders import PyPDFLoader

loader = PyPDFLoader("Spotmax_intro_cn_2020.pdf")
docs = loader.load()
  • 切割文档
    1. 这个文本分割器是通用文本的推荐分割器。它由一个字符列表参数化。它会按顺序尝试在这些字符上进行分割,直到分块足够小。默认列表是["\n\n", "\n", " ", ""]。这样做的效果是尽可能地保持所有段落(然后是句子,然后是单词)在一起。
python 复制代码
from langchain.text_splitter import RecursiveCharacterTextSplitter
text_splitter = RecursiveCharacterTextSplitter(
    chunk_size = 200,
    chunk_overlap = 10
)
python 复制代码
splits = text_splitter.split_documents(docs)


persist_directory = 'data/'
!rm -rf ./data 
  • 将数据存入向量数据库
python 复制代码
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import Chroma
# embedding = OpenAIEmbeddings() #如何直接调用OpenAI的 GPT 服务
embedding = OpenAIEmbeddings(deployment=embedding_deployment) #通过Azure的OpenAI GPT服务
vectordb = Chroma.from_documents(
    documents=splits,
    collection_name="spotmax",
    embedding=embedding,
    persist_directory=persist_directory
)
vectordb.persist()
print(vectordb._collection.count())
python 复制代码
docs = vectordb.similarity_search("如何提高可用性",k=2)

利用向量数据库进行QA

python 复制代码
from langchain.chains import RetrievalQA
from langchain.chat_models import AzureChatOpenAI
# from langchain.chat_models import ChatOpenAI #直接访问OpenAI的GPT服务

#llm = ChatOpenAI(model_name="gpt-4", temperature=0) #直接访问OpenAI的GPT服务
llm = AzureChatOpenAI(deployment_name = deployment, model_name=model, temperature=0.7, max_tokens=1000) #通过Azure的OpenAI服务
retriever=vectordb.as_retriever(
    search_type="mmr", search_kwargs={"k": 3}
    #search_type="similarity", search_kwargs={"k": 3}
)
qa = RetrievalQA.from_chain_type(llm=llm, chain_type="refine", retriever=retriever,
                                 return_source_documents=False, verbose=True)
python 复制代码
result = qa({"query": "什么是SpotMax?"})
print(result["result"])

从文本到图片

python 复制代码
import os
import http.client
import requests
import time

def create_image(prompt):
  api_base = os.getenv("OPENAI_API_BASE")
  api_key = os.getenv("OPENAI_API_KEY")
  api_version = api_version = '2022-08-03-preview'

  url = "{}dalle/text-to-image?api-version={}".format(api_base, api_version)
  headers= { "api-key": api_key, "Content-Type": "application/json" }
  body = {
      "caption": prompt,
      "resolution": "512x512"
  }
  submission = requests.post(url, headers=headers, json=body)
  operation_location = submission.headers['Operation-Location']
  retry_after = submission.headers['Retry-after']
  status = ""
  while (status != "Succeeded"):
      time.sleep(int(retry_after))
      response = requests.get(operation_location, headers=headers)
      status = response.json()['status']
  image_url = response.json()['result']['contentUrl']
  #display(Image(url=image_url))
  return "\n![image]("+image_url+")"
python 复制代码
print (create_image("A dog on the street."))

构建多模态Chatbot,包括有记忆的Agent

相关推荐
阿里技术2 天前
OpenAI 故障复盘 - 阿里云容器服务与可观测产品如何保障大规模 K8s 集群稳定性
阿里云·ai·容器·kubernetes·云计算·openai
小超电子笔记2 天前
ESP32-S3遇见OpenAI:OpenAI官方发布ESP32嵌入式实时RTC SDK
单片机·esp32·openai
新智元4 天前
奥特曼崩溃认错:ChatGPT 被用户薅秃,OpenAI 亏大了!专访痛忆宫斗事件
人工智能·openai
that's boy4 天前
开源模型迎来颠覆性突破:DeepSeek-V3与Qwen2.5如何重塑AI格局?
人工智能·chatgpt·openai·midjourney·claude·deepseek
engchina5 天前
使用 `llama_index` 构建智能问答系统:多种文档切片方法的评估
python·openai·llama·代码优化·rag
码农张思壮7 天前
使用 AI 编码将路书 GPX 文件导入高德地图生成路线的尝试
后端·python·openai
我码玄黄7 天前
Zsh Codex 代码解析二
python·aigc·openai
羊羊洒洒_Blog9 天前
【翻译】审慎对齐:推理使更安全的语言模型成为可能
人工智能·语言模型·自然语言处理·openai·推理·o1
wuhanwhite9 天前
2025:OpenAI的“七十二变”?
人工智能·openai·语音识别
Gopher10 天前
星河远阔,人间灯火——我的2024
人工智能·google·openai