实验3 中文分词

必做题:

  1. 数据准备:academy_titles.txt为"考硕考博"板块的帖子标题,job_titles.txt为"招聘信息"板块的帖子标题,
  2. 使用jieba工具对academy_titles.txt进行分词,接着去除停用词,然后统计词频,最后绘制词云。同样的,也绘制job_titles.txt的词云。
  3. 将jieba替换为pkuseg工具,分别绘制academy_titles.txt和job_titles.txt的词云。要给出每一部分的代码。

效果图

代码

复制代码
import jieba
import re
from wordcloud import WordCloud
from collections import Counter
import matplotlib.pyplot as plt

# 读取academy_titles文件内容
with open('C:\\Users\\hp\\Desktop\\实验3\\academy_titles.txt', 'r', encoding='utf-8') as file:
    academy_titles = file.readlines()

# 读取job_titles文件内容
with open('C:\\Users\\hp\\Desktop\\实验3\\job_titles.txt', 'r', encoding='utf-8') as file:
    job_titles = file.readlines()

# 将招聘信息与学术信息分开
academy_titles = [title.strip() for title in academy_titles]
job_titles = [title.strip() for title in job_titles]

# 分词、去除停用词、统计词频(对academy_titles)
academy_words = []
for title in academy_titles:
    words = jieba.cut(title)
    filtered_words = [word for word in words if re.match(r'^[\u4e00-\u9fa5]+$', word)]
    academy_words.extend(filtered_words)

请自行补全代码,或者这周五晚上更新完整代码

相关推荐
咕咚-萌西1 小时前
MLLM-LLaVA-FL: Multimodal Large Language Model Assisted FederatedLearning
人工智能·语言模型·自然语言处理
DisonTangor1 小时前
PaddleOCR-VL: 通过0.9B超紧凑视觉语言模型增强多语言文档解析
人工智能·计算机视觉·语言模型·自然语言处理·开源·aigc
油泼辣子多加10 小时前
【实战】自然语言处理--长文本分类(1)DPCNN算法
算法·自然语言处理·分类
Francek Chen1 天前
【自然语言处理】预训练01:词嵌入(word2vec)
人工智能·自然语言处理·word2vec
Coovally AI模型快速验证1 天前
突破性开源模型DepthLM问世:视觉语言模型首次实现精准三维空间理解
人工智能·语言模型·自然语言处理·ocr·音视频·ai编程
加油吧zkf1 天前
循环神经网络 RNN:从时间序列到自然语言的秘密武器
人工智能·rnn·自然语言处理
C7211BA2 天前
世界模型和大语言模型的区别
人工智能·语言模型·自然语言处理
青云交2 天前
Java 大视界 -- Java 大数据机器学习模型在智能客服多轮对话系统中的优化策略
深度学习·自然语言处理·智能客服·数据预处理·机器学习模型·java 大数据·多轮对话系统
孤狼灬笑2 天前
自然语言处理(NLP)—发展历程(背景、技术、优缺点、未来方向)
人工智能·自然语言处理·nlp
赋创小助手2 天前
实测对比 32GB RTX 5090 与 48GB RTX 4090,多场景高并发测试,全面解析 AI 服务器整机性能与显存差异。
运维·服务器·人工智能·科技·深度学习·神经网络·自然语言处理