Python批量提取图像灰度共生矩阵(GLCM)、支持批量处理、任意图像格式

目录

一、介绍

二、实现

1、特征计算

2、批量处理

3、结果


一、介绍

灰度共生矩阵(Grey Level Co-occurrence Matrix)也叫做空间灰度级依赖矩阵(SGLDM),它是一种基于统计的纹理特征提取的方法。

一般包括四个方向:

  • (a,b)=(1,0),像素对是水平的,即0度扫描;
  • (a,b)=(0,1),像素对是垂直的,即90度扫描;
  • (a,b)=(1,1),像素对是右对角线的,即45度扫描;
  • (a,b)=(-1,1),像素对是左对角线,即135度扫描。

一般包括8个常用特征:均值、方差、角二阶矩、熵、对比度、相关性、Homogeneity、Dissimilarity

二、实现

1、特征计算

python 复制代码
# 建立特征函数索引
indexs = {0:calculate_gray_co_occurrence_matrix_entropy, # 熵
          1:calculate_gray_co_occurrence_matrix_mean, # 均值
          2:calculate_gray_co_occurrence_matrix_variance, # 方差
          3:calculate_gray_co_occurrence_matrix_homogeneity, # homogeneity
          4:calculate_gray_co_occurrence_matrix_contrast, # contrast
          5:calculate_gray_co_occurrence_matrix_dissimilarity, # Dissimilarity
          6:calculate_gray_co_occurrence_matrix_energy, # 能量or角二阶
          7:calculate_gray_co_occurrence_matrix_correlation, # 相关性
          8:calculate_gray_co_occurrence_matrix_autocorrelation # 自相关性
          }

2、批量处理

其中 .jpg 修改为自己文件的后缀

python 复制代码
if __name__=="__main__":
    path = r"./data"
    save_ = r"./texture"

    file_list = os.listdir(path)
    for i in file_list:
        if os.path.splitext(i)[1] == ".jpg":
            print("正在处理文件:", i)

            file_path = path + "/" + i
            glcm = glcm_features(file_path)
            print(glcm.shape)
            utils.save_img(glcm, save_+"/" + os.path.splitext(i)[0] +'.tif')

3、结果

我们提取下面的图像:

只提取均值这个特征:

代码链接:Python批量提取图像灰度共生矩阵(GLCM)、支持批量处理、任意图像格式

相关推荐
dme.10 分钟前
Javascript之DOM操作
开发语言·javascript·爬虫·python·ecmascript
加油吧zkf20 分钟前
水下目标检测:突破与创新
人工智能·计算机视觉·目标跟踪
加油吧zkf20 分钟前
AI大模型如何重塑软件开发流程?——结合目标检测的深度实践与代码示例
开发语言·图像处理·人工智能·python·yolo
t_hj21 分钟前
python规划
python
峙峙峙33 分钟前
线性代数--AI数学基础复习
人工智能·线性代数
czhc114007566336 分钟前
Linux 76 rsync
linux·运维·python
weiwuxian38 分钟前
揭开智能体的神秘面纱:原来你不是"超级AI"!
人工智能
Codebee39 分钟前
“自举开发“范式:OneCode如何用低代码重构自身工具链
java·人工智能·架构
说私域1 小时前
基于开源AI智能名片链动2+1模式的S2B2C商城小程序:门店私域流量与视频号直播融合的生态创新研究
人工智能·小程序·开源
Ronin-Lotus1 小时前
深度学习篇---Yolov系列
人工智能·深度学习