Python批量提取图像灰度共生矩阵(GLCM)、支持批量处理、任意图像格式

目录

一、介绍

二、实现

1、特征计算

2、批量处理

3、结果


一、介绍

灰度共生矩阵(Grey Level Co-occurrence Matrix)也叫做空间灰度级依赖矩阵(SGLDM),它是一种基于统计的纹理特征提取的方法。

一般包括四个方向:

  • (a,b)=(1,0),像素对是水平的,即0度扫描;
  • (a,b)=(0,1),像素对是垂直的,即90度扫描;
  • (a,b)=(1,1),像素对是右对角线的,即45度扫描;
  • (a,b)=(-1,1),像素对是左对角线,即135度扫描。

一般包括8个常用特征:均值、方差、角二阶矩、熵、对比度、相关性、Homogeneity、Dissimilarity

二、实现

1、特征计算

python 复制代码
# 建立特征函数索引
indexs = {0:calculate_gray_co_occurrence_matrix_entropy, # 熵
          1:calculate_gray_co_occurrence_matrix_mean, # 均值
          2:calculate_gray_co_occurrence_matrix_variance, # 方差
          3:calculate_gray_co_occurrence_matrix_homogeneity, # homogeneity
          4:calculate_gray_co_occurrence_matrix_contrast, # contrast
          5:calculate_gray_co_occurrence_matrix_dissimilarity, # Dissimilarity
          6:calculate_gray_co_occurrence_matrix_energy, # 能量or角二阶
          7:calculate_gray_co_occurrence_matrix_correlation, # 相关性
          8:calculate_gray_co_occurrence_matrix_autocorrelation # 自相关性
          }

2、批量处理

其中 .jpg 修改为自己文件的后缀

python 复制代码
if __name__=="__main__":
    path = r"./data"
    save_ = r"./texture"

    file_list = os.listdir(path)
    for i in file_list:
        if os.path.splitext(i)[1] == ".jpg":
            print("正在处理文件:", i)

            file_path = path + "/" + i
            glcm = glcm_features(file_path)
            print(glcm.shape)
            utils.save_img(glcm, save_+"/" + os.path.splitext(i)[0] +'.tif')

3、结果

我们提取下面的图像:

只提取均值这个特征:

代码链接:Python批量提取图像灰度共生矩阵(GLCM)、支持批量处理、任意图像格式

相关推荐
方安乐2 小时前
杂记:Quart和Flask比较
后端·python·flask
得赢科技2 小时前
2025年GEO营销应用白皮书 - 服务业区域推广深度剖析
大数据·人工智能
Deepoch2 小时前
Deepoc具身智能家庭系统:重塑居家生活新体验
人工智能·科技·机器人·生活·具身模型·deepoc·deepoc具身模型开发板
嫂子开门我是_我哥2 小时前
第十六节:异常处理:让程序在报错中稳定运行
开发语言·python
测试19982 小时前
如何使用Appium实现移动端UI自动化测试?
自动化测试·软件测试·python·测试工具·ui·appium·测试用例
yuankoudaodaokou2 小时前
无图纸如何定制汽车外饰件?3DeVOK MT+ QUICKSURFACE逆向设计解决方案
python·3d·汽车·机器翻译
GIS数据转换器2 小时前
基于GIS的宠物救助服务平台
大数据·人工智能·科技·机器学习·无人机·智慧城市·宠物
qwy7152292581632 小时前
3-用摄像头拍摄图像及视频
人工智能·opencv·音视频
AI街潜水的八角2 小时前
基于YOLO26苹果水果缺陷检测系统1:苹果水果缺陷检测数据集说明(含下载链接)
人工智能·深度学习·神经网络
Solar20252 小时前
工程材料企业如何借助数字化工具突破获客瓶颈:方法论与实践路径
大数据·人工智能·物联网