Python批量提取图像灰度共生矩阵(GLCM)、支持批量处理、任意图像格式

目录

一、介绍

二、实现

1、特征计算

2、批量处理

3、结果


一、介绍

灰度共生矩阵(Grey Level Co-occurrence Matrix)也叫做空间灰度级依赖矩阵(SGLDM),它是一种基于统计的纹理特征提取的方法。

一般包括四个方向:

  • (a,b)=(1,0),像素对是水平的,即0度扫描;
  • (a,b)=(0,1),像素对是垂直的,即90度扫描;
  • (a,b)=(1,1),像素对是右对角线的,即45度扫描;
  • (a,b)=(-1,1),像素对是左对角线,即135度扫描。

一般包括8个常用特征:均值、方差、角二阶矩、熵、对比度、相关性、Homogeneity、Dissimilarity

二、实现

1、特征计算

python 复制代码
# 建立特征函数索引
indexs = {0:calculate_gray_co_occurrence_matrix_entropy, # 熵
          1:calculate_gray_co_occurrence_matrix_mean, # 均值
          2:calculate_gray_co_occurrence_matrix_variance, # 方差
          3:calculate_gray_co_occurrence_matrix_homogeneity, # homogeneity
          4:calculate_gray_co_occurrence_matrix_contrast, # contrast
          5:calculate_gray_co_occurrence_matrix_dissimilarity, # Dissimilarity
          6:calculate_gray_co_occurrence_matrix_energy, # 能量or角二阶
          7:calculate_gray_co_occurrence_matrix_correlation, # 相关性
          8:calculate_gray_co_occurrence_matrix_autocorrelation # 自相关性
          }

2、批量处理

其中 .jpg 修改为自己文件的后缀

python 复制代码
if __name__=="__main__":
    path = r"./data"
    save_ = r"./texture"

    file_list = os.listdir(path)
    for i in file_list:
        if os.path.splitext(i)[1] == ".jpg":
            print("正在处理文件:", i)

            file_path = path + "/" + i
            glcm = glcm_features(file_path)
            print(glcm.shape)
            utils.save_img(glcm, save_+"/" + os.path.splitext(i)[0] +'.tif')

3、结果

我们提取下面的图像:

只提取均值这个特征:

代码链接:Python批量提取图像灰度共生矩阵(GLCM)、支持批量处理、任意图像格式

相关推荐
有Li7 分钟前
跨视角差异-依赖网络用于体积医学图像分割|文献速递-生成式模型与transformer在医学影像中的应用
人工智能·计算机视觉
傻啦嘿哟9 分钟前
如何使用 Python 开发一个简单的文本数据转换为 Excel 工具
开发语言·python·excel
B站计算机毕业设计超人16 分钟前
计算机毕业设计SparkStreaming+Kafka旅游推荐系统 旅游景点客流量预测 旅游可视化 旅游大数据 Hive数据仓库 机器学习 深度学习
大数据·数据仓库·hadoop·python·kafka·课程设计·数据可视化
新加坡内哥谈技术27 分钟前
Mistral推出“Le Chat”,对标ChatGPT
人工智能·chatgpt
GOTXX35 分钟前
基于Opencv的图像处理软件
图像处理·人工智能·深度学习·opencv·卷积神经网络
IT古董40 分钟前
【人工智能】Python在机器学习与人工智能中的应用
开发语言·人工智能·python·机器学习
CV学术叫叫兽1 小时前
快速图像识别:落叶植物叶片分类
人工智能·分类·数据挖掘
湫ccc1 小时前
《Python基础》之pip换国内镜像源
开发语言·python·pip
hakesashou1 小时前
Python中常用的函数介绍
java·网络·python
菜鸟的人工智能之路1 小时前
极坐标气泡图:医学数据分析的可视化新视角
python·数据分析·健康医疗