SVM回归预测

svm回归预测,数据,见同名同名公众号

# -*- coding: utf-8 -*-
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.svm import SVR
from sklearn.preprocessing import StandardScaler

#加载数据集并归一化
def data_load():
    data = pd.read_csv('data.csv') #读取数据
    y = data.y      #标签
    X = data.drop('y', axis=1)  #特征
    row = data.shape[0] #数据集总行数
    # print(row)
    num_train = int(row * 0.9)  # 训练集比例计算训练集数量
    #划分训练集与测试集
    x_train=X.iloc[0:num_train,:].values
    x_test = X.iloc[num_train:, :].values
    y_train = y.iloc[0:num_train].values.reshape(-1,1) #转换为二维
    y_test=y.iloc[num_train:].values.reshape(-1,1)#转换为二维

    # 归一化标准ss_X,ss_Y
    ss_X = StandardScaler().fit(x_train)
    ss_Y = StandardScaler().fit(y_train)

    #归一化
    x_train = ss_X.transform(x_train)
    x_test = ss_X.transform(x_test)
    y_train = ss_Y.transform(y_train)
    y_test = ss_Y.transform(y_test)

    return x_train,y_train,x_test,y_test,ss_Y


if __name__=='__main__':
    # 加载数据
    x_train,y_train,x_test,y_test,ss_Y=data_load()
    # 训练SVR模型
    model = SVR(kernel='linear') #定义模型
    model.fit(x_train,y_train)   #训练模型
    #预测
    pred_data = model.predict(x_test)
    #反归一化
    y_test    = ss_Y.inverse_transform(y_test) #实际值反归一化
    pred_test = ss_Y.inverse_transform(pred_data.reshape(-1,1))#预测值反归一化
    #设置绘图属性
    plt.rcParams['font.family'] = ['sans-serif']
    plt.rcParams['font.sans-serif'] = ['SimHei']
    plt.rcParams['axes.unicode_minus']=False

    # 绘图
    plt.figure()
    plt.plot(y_test, c='k', marker="*",label='实际值')
    plt.plot(pred_test, c='r', marker="o",label='预测值')
    plt.legend()
    plt.xlabel('样本点')
    plt.ylabel('功率')
    plt.title('测试集对比')
    plt.savefig('测试集对比.jpg')
    plt.show()

预测对比图:

相关推荐
pianmian12 小时前
python数据结构基础(7)
数据结构·算法
好奇龙猫4 小时前
【学习AI-相关路程-mnist手写数字分类-win-硬件:windows-自我学习AI-实验步骤-全连接神经网络(BPnetwork)-操作流程(3) 】
人工智能·算法
sp_fyf_20244 小时前
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-11-01
人工智能·深度学习·神经网络·算法·机器学习·语言模型·数据挖掘
香菜大丸5 小时前
链表的归并排序
数据结构·算法·链表
jrrz08285 小时前
LeetCode 热题100(七)【链表】(1)
数据结构·c++·算法·leetcode·链表
oliveira-time5 小时前
golang学习2
算法
南宫生6 小时前
贪心算法习题其四【力扣】【算法学习day.21】
学习·算法·leetcode·链表·贪心算法
懒惰才能让科技进步7 小时前
从零学习大模型(十二)-----基于梯度的重要性剪枝(Gradient-based Pruning)
人工智能·深度学习·学习·算法·chatgpt·transformer·剪枝
Ni-Guvara7 小时前
函数对象笔记
c++·算法
泉崎7 小时前
11.7比赛总结
数据结构·算法