SVM回归预测

svm回归预测,数据,见同名同名公众号

复制代码
# -*- coding: utf-8 -*-
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.svm import SVR
from sklearn.preprocessing import StandardScaler

#加载数据集并归一化
def data_load():
    data = pd.read_csv('data.csv') #读取数据
    y = data.y      #标签
    X = data.drop('y', axis=1)  #特征
    row = data.shape[0] #数据集总行数
    # print(row)
    num_train = int(row * 0.9)  # 训练集比例计算训练集数量
    #划分训练集与测试集
    x_train=X.iloc[0:num_train,:].values
    x_test = X.iloc[num_train:, :].values
    y_train = y.iloc[0:num_train].values.reshape(-1,1) #转换为二维
    y_test=y.iloc[num_train:].values.reshape(-1,1)#转换为二维

    # 归一化标准ss_X,ss_Y
    ss_X = StandardScaler().fit(x_train)
    ss_Y = StandardScaler().fit(y_train)

    #归一化
    x_train = ss_X.transform(x_train)
    x_test = ss_X.transform(x_test)
    y_train = ss_Y.transform(y_train)
    y_test = ss_Y.transform(y_test)

    return x_train,y_train,x_test,y_test,ss_Y


if __name__=='__main__':
    # 加载数据
    x_train,y_train,x_test,y_test,ss_Y=data_load()
    # 训练SVR模型
    model = SVR(kernel='linear') #定义模型
    model.fit(x_train,y_train)   #训练模型
    #预测
    pred_data = model.predict(x_test)
    #反归一化
    y_test    = ss_Y.inverse_transform(y_test) #实际值反归一化
    pred_test = ss_Y.inverse_transform(pred_data.reshape(-1,1))#预测值反归一化
    #设置绘图属性
    plt.rcParams['font.family'] = ['sans-serif']
    plt.rcParams['font.sans-serif'] = ['SimHei']
    plt.rcParams['axes.unicode_minus']=False

    # 绘图
    plt.figure()
    plt.plot(y_test, c='k', marker="*",label='实际值')
    plt.plot(pred_test, c='r', marker="o",label='预测值')
    plt.legend()
    plt.xlabel('样本点')
    plt.ylabel('功率')
    plt.title('测试集对比')
    plt.savefig('测试集对比.jpg')
    plt.show()

预测对比图:

相关推荐
修行者Java35 分钟前
JVM 垃圾回收算法的详细介绍
jvm·算法
AndrewHZ38 分钟前
【图像处理基石】什么是光流法?
图像处理·算法·计算机视觉·目标跟踪·cv·光流法·行为识别
mjhcsp2 小时前
C++ 三分查找:在单调与凸函数中高效定位极值的算法
开发语言·c++·算法
立志成为大牛的小牛2 小时前
数据结构——四十二、二叉排序树(王道408)
数据结构·笔记·程序人生·考研·算法
Funny_AI_LAB4 小时前
李飞飞联合杨立昆发表最新论文:超感知AI模型从视频中“看懂”并“预见”三维世界
人工智能·算法·语言模型·音视频
RTC老炮7 小时前
webrtc降噪-PriorSignalModelEstimator类源码分析与算法原理
算法·webrtc
草莓火锅9 小时前
用c++使输入的数字各个位上数字反转得到一个新数
开发语言·c++·算法
散峰而望9 小时前
C/C++输入输出初级(一) (算法竞赛)
c语言·开发语言·c++·算法·github
Kuo-Teng9 小时前
LeetCode 160: Intersection of Two Linked Lists
java·算法·leetcode·职场和发展
fie88899 小时前
基于MATLAB的狼群算法实现
开发语言·算法·matlab