【深度学习】【机器学习】用神经网络进行入侵检测,NSL-KDD数据集,基于机器学习(深度学习)判断网络入侵

文章目录

【深度学习】用神经网络进行入侵检测,NSL-KDD数据集,用TCP连接特征判断是否是网络入侵

下载数据集NSL-KDD

NSL-KDD数据集,有dos,u2r,r21,probe等类型的攻击,和普通的正常的流量,即是这样:

Normal:正常记录

DOS:拒绝服务攻击

PROBE:监视和其他探测活动

R2L:来自远程机器的非法访问

U2R:普通用户对本地超级用户特权的非法访问

数据集样子:

数据集介绍

https://towardsdatascience.com/a-deeper-dive-into-the-nsl-kdd-data-set-15c753364657

https://mathpretty.com/10244.html

输入的41个特征

下面是对TCP连接的41个特征的介绍:

特征编号 特征名称 特征描述 类型 范围
1 duration 连接持续时间,从TCP连接建立到结束的时间,或每个UDP数据包的连接时间 连续 [0, 58329]秒
2 protocol_type 协议类型,可能值为TCP, UDP, ICMP 离散 -
3 service 目标主机的网络服务类型,共70种可能值 离散 -
4 flag 连接状态,11种可能值,表示连接是否按照协议要求开始或完成 离散 -
5 src_bytes 从源主机到目标主机的数据的字节数 连续 [0, 1379963888]
6 dst_bytes 从目标主机到源主机的数据的字节数 连续 [0, 1309937401]
7 land 若连接来自/送达同一个主机/端口则为1,否则为0 离散 0或1
8 wrong_fragment 错误分段的数量 连续 [0, 3]
9 urgent 加急包的个数 连续 [0, 14]
10 hot 访问系统敏感文件和目录的次数 连续 [0, 101]
11 num_failed_logins 登录尝试失败的次数 连续 [0, 5]
12 logged_in 成功登录则为1,否则为0 离散 0或1
13 num_compromised compromised条件出现的次数 连续 [0, 7479]
14 root_shell 若获得root shell 则为1,否则为0 离散 0或1
15 su_attempted 若出现"su root" 命令则为1,否则为0 离散 0或1
16 num_root root用户访问次数 连续 [0, 7468]
17 num_file_creations 文件创建操作的次数 连续 [0, 100]
18 num_shells 使用shell命令的次数 连续 [0, 5]
19 num_access_files 访问控制文件的次数 连续 [0, 9]
20 num_outbound_cmds 一个FTP会话中出站连接的次数 连续 0
21 is_hot_login 登录是否属于"hot"列表,是为1,否则为0 离散 0或1
22 is_guest_login 若是guest登录则为1,否则为0 离散 0或1
23 count 过去两秒内,与当前连接具有相同的目标主机的连接数 连续 [0, 511]
24 srv_count 过去两秒内,与当前连接具有相同服务的连接数 连续 [0, 511]
25 serror_rate 过去两秒内,在与当前连接具有相同目标主机的连接中,出现"SYN"错误的连接的百分比 连续 [0.00, 1.00]
26 srv_serror_rate 过去两秒内,在与当前连接具有相同服务的连接中,出现"SYN"错误的连接的百分比 连续 [0.00, 1.00]
27 rerror_rate 过去两秒内,在与当前连接具有相同目标主机的连接中,出现"REJ"错误的连接的百分比 连续 [0.00, 1.00]
28 srv_rerror_rate 过去两秒内,在与当前连接具有相同服务的连接中,出现"REJ"错误的连接的百分比 连续 [0.00, 1.00]
29 same_srv_rate 过去两秒内,在与当前连接具有相同目标主机的连接中,与当前连接具有相同服务的连接的百分比 连续 [0.00, 1.00]
30 diff_srv_rate 过去两秒内,在与当前连接具有相同目标主机的连接中,与当前连接具有不同服务的连接的百分比 连续 [0.00, 1.00]
31 srv_diff_host_rate 过去两秒内,在与当前连接具有相同服务的连接中,与当前连接具有不同目标主机的连接的百分比 连续 [0.00, 1.00]
32 dst_host_count 前100个连接中,与当前连接具有相同目标主机的连接数 连续 [0, 255]
33 dst_host_srv_count 前100个连接中,与当前连接具有相同目标主机相同服务的连接数 连续 [0, 255]
34 dst_host_same_srv_rate 前100个连接中,与当前连接具有相同目标主机相同服务的连接所占的百分比 连续 [0.00, 1.00]
35 dst_host_diff_srv_rate 前100个连接中,与当前连接具有相同目标主机不同服务的连接所占的百分比 连续 [0.00, 1.00]
36 dst_host_same_src_port_rate 前100个连接中,与当前连接具有相同目标主机相同源端口的连接所占的百分比 连续 [0.00, 1.00]
37 dst_host_srv_diff_host_rate 前100个连接中,与当前连接具有相同目标主机相同服务的连接中,与当前连接具有不同源主机的连接所占的百分比 连续 [0.00, 1.00]
38 dst_host_serror_rate 前100个连接中,与当前连接具有相同目标主机的连接中,出现SYN错误的连接所占的百分比 连续 [0.00, 1.00]
39 dst_host_srv_serror_rate 前100个连接中,与当前连接具有相同目标主机相同服务的连接中,出现SYN错误的连接所占的百分比 连续 [0.00, 1.00]
40 dst_host_rerror_rate 前100个连接中,与当前连接具有相同目标主机的连接中,出现REJ错误的连接所占的百分比 连续 [0.00, 1.00]
41 dst_host_srv_rerror_rate 前100个连接中,与当前连接具有相同目标主机相同服务的连接中,出现REJ错误的连接所占的百分比 连续 [0.00, 1.00]

这个表格提供了关于TCP连接的41个特征的详细介绍,包括特征编号、特征名称、特征描述、类型以及范围。

输出的含义

数据集是一个csv表格,倒数第二列就是类别标签,大类其实就五个:

cpp 复制代码
['normal', 'dos', 'probe', 'r2l', 'u2r']

但csv里写的详细的标签:

可以通过这个程序转换:

cpp 复制代码
# 结果标签转换为数字
dos_type = ['back', 'land', 'neptune', 'pod', 'smurf', 'teardrop', 'processtable', 'udpstorm', 'mailbomb',
            'apache2']
probing_type = ['ipsweep', 'mscan', 'nmap', 'portsweep', 'saint', 'satan']
r2l_type = ['ftp_write', 'guess_passwd', 'imap', 'multihop', 'phf', 'warezmaster', 'warezclient', 'spy', 'sendmail',
            'xlock', 'snmpguess', 'named', 'xsnoop', 'snmpgetattack', 'worm']
u2r_type = ['buffer_overflow', 'loadmodule', 'perl', 'rootkit', 'xterm', 'ps', 'httptunnel', 'sqlattack']
type2id = {'normal': 0}
for i in dos_type:
    type2id[i] = 1
for i in r2l_type:
    type2id[i] = 2
for i in u2r_type:
    type2id[i] = 3
for i in probing_type:
    type2id[i] = 4

数据处理&&训练技巧

数据预处理

讨论原始网络数据面临的挑战:高维度、类别特征和连续特征。

使用的技术:

对类别数据(协议类型、服务和标志)进行独热编码。

标准化连续特征以处理不同的尺度。

如何处理缺失数据(如果有),通过插值或删除。

使用StandardScaler和pickle保存缩放参数以保持一致的预处理。

处理不平衡数据

讨论入侵检测数据集中的不平衡问题。

介绍ImbalancedDatasetSampler的使用及其如何帮助实现平衡的小批量。

使用此类采样器对深度学习模型训练的好处。

模型架构

解释两个提出的模型:BGRUNet2和AttentionModel。

详细介绍GRU(门控循环单元)层、双向性和注意力机制。

权重初始化技术,如Xavier和Kaiming初始化。

使用Dropout和Batch Normalization防止过拟合。

训练技巧

使用CosineAnnealingLR进行学习率调度,以适应性地调整学习率。

选择Adam优化器而非传统的SGD的原因。

损失函数的选择及其对模型训练的影响。

实验设置

数据加载器和批处理过程的描述。

利用GPU进行高效模型训练。

在训练过程中评估模型准确性和损失的过程。

建神经网络,输入41个特征,输出是那种类别的攻击

神经网络模型:

cpp 复制代码
class BGRUNet2(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(BGRUNet2, self).__init__()
        self.hidden_size = hidden_size
        self.gru = nn.GRU(input_size, hidden_size, batch_first=True, bidirectional=True)
        self.fc1 = nn.Linear(hidden_size * 2, 512)  # Multiply hidden size by 2 for bidirectional
        self.fc2 = nn.Linear(512, 64)
        self.fc3 = nn.Linear(64, output_size)
        self.dropout = nn.Dropout(0.2)

        # Initialize GRU weights
        for name, param in self.gru.named_parameters():
            if 'weight_ih' in name:
                init.xavier_uniform_(param.data)
            elif 'weight_hh' in name:
                init.orthogonal_(param.data)
            elif 'bias' in name:
                param.data.fill_(0)

        # Initialize fully connected layer weights
        init.xavier_uniform_(self.fc1.weight)
        init.xavier_uniform_(self.fc2.weight)
        init.xavier_uniform_(self.fc3.weight)

        # Initialize fully connected layer biases
        init.zeros_(self.fc1.bias)
        init.zeros_(self.fc2.bias)
        init.zeros_(self.fc3.bias)

    def forward(self, x):
        # Initialize hidden state for bidirectional GRU
        h0 = torch.zeros(2, x.size(0), self.hidden_size).to(x.device)  # 2 for bidirectional

        # Forward pass through GRU
        out, _ = self.gru(x, h0)

        # Concatenate the hidden states from both directions
        out = torch.cat((out[:, -1, :self.hidden_size], out[:, 0, self.hidden_size:]), dim=1)

        out = self.dropout(out)
        out = F.relu(self.fc1(out))
        out = self.dropout(out)
        out = F.relu(self.fc2(out))
        out = self.dropout(out)
        return self.fc3(out)

模型训练

训练30轮,准确度最高97.2%:

随着训练轮数的变化,损失的变化:

模型推理

加载模型后,构建输入数据,模型推导得出结果:

cpp 复制代码
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = BGRUNet2(input_size=122, hidden_size=256, output_size=5)
model.load_state_dict(torch.load('model_accuracy_max.pth', map_location=device))
model.to(device)
model.eval()
time1 = time.time()
with torch.no_grad():
    X = X.to(device)
    outputs = model(X)
    # softmax
    outputs = F.softmax(outputs, dim=1)
    _, predicted = torch.max(outputs.data, 1)
    time2 = time.time()

写gradio前端界面,用户自己输入41个特征,后端用模型推理计算后显示出是否是dos攻击。

运行代码后访问:http://127.0.0.1:7869/

可以看到:

填写特征太多,有点懒得填,可以拉到最底下,有例子,可以点一下例子数据:

然后点一下Submit,模型推流后给出结果,可以看到,模型认为这次TCP连接数据表明了这是probe入侵,概率是1,模型推理消耗了0.002秒。

使用方法:

执行python run2.py。即可开启训练。

执行python infer.py。即可开启gradio前端界面。

获取代码和模型

go:

css 复制代码
https://docs.qq.com/sheet/DUEdqZ2lmbmR6UVdU?tab=BB08J2
相关推荐
-Nemophilist-7 分钟前
机器学习与深度学习-1-线性回归从零开始实现
深度学习·机器学习·线性回归
Chef_Chen2 小时前
从0开始机器学习--Day17--神经网络反向传播作业
python·神经网络·机器学习
羊小猪~~4 小时前
神经网络基础--什么是正向传播??什么是方向传播??
人工智能·pytorch·python·深度学习·神经网络·算法·机器学习
软工菜鸡5 小时前
预训练语言模型BERT——PaddleNLP中的预训练模型
大数据·人工智能·深度学习·算法·语言模型·自然语言处理·bert
哔哩哔哩技术6 小时前
B站S赛直播中的关键事件识别与应用
深度学习
deephub6 小时前
Tokenformer:基于参数标记化的高效可扩展Transformer架构
人工智能·python·深度学习·架构·transformer
___Dream6 小时前
【CTFN】基于耦合翻译融合网络的多模态情感分析的层次学习
人工智能·深度学习·机器学习·transformer·人机交互
极客代码6 小时前
【Python TensorFlow】入门到精通
开发语言·人工智能·python·深度学习·tensorflow
王哈哈^_^7 小时前
【数据集】【YOLO】【VOC】目标检测数据集,查找数据集,yolo目标检测算法详细实战训练步骤!
人工智能·深度学习·算法·yolo·目标检测·计算机视觉·pyqt
是瑶瑶子啦7 小时前
【深度学习】论文笔记:空间变换网络(Spatial Transformer Networks)
论文阅读·人工智能·深度学习·视觉检测·空间变换