线性代数的本质 3 线性变换与矩阵

基于3Blue1Brown视频的笔记


线性变换(linear tranformation)

首先,什么是变换?变换实际就是函数(function)的一种,它**接受输入,并输出结果。**称之为变换则是在暗示从可视化的角度去看待它。

在线性代数中,我们往往**输入一个向量,输出一个新的向量。**如果一个变换接受一个向量,然后输出一个向量,我们就可以想象这个向量移动到新向量位置的过程。进一步地,我们可以想象整个平面的向量都做这个变换,移动到新的位置,这看起来就是整个平面在变形,变换给了我们扭曲空间的能力。

有非常多美妙而复杂的变换,而线性变换将变换限制为线性:

若一个变换具有以下两个性质,则说它是线性的:

  1. 所有直线在变换后还是直线
  2. 原点保持固定

描述线性变换------矩阵

现在的问题是,我们如何描述一个线性变换。也就是给出一定的描述或者操作,使得我们可以对所有向量这么做而得到变换后的新向量。

对于二维平面来说,我们实际上只需要知道基向量的新位置,其他向量都会随之而动。

这是由于线性变换本身的性质,而有一个重要的推论:一个向量如果是另两个向量的线性组合,则经过线性变换后,它仍然是它们相同的线性组合。

比如现在我们在原坐标系有个向量,这意味着这个向量可以如此表示: ,现在我们知道,变换之后到了原来的位置,而到了原来的位置,那么我们就可以计算的变换后的位置是

我们只需要记录下新的 的位置,我们就可以计算空间任意向量变换后到了哪里:对于任意的,我们通过来计算。也就是,我们只需要这两个信息,就可以掌握这个线性变换。

通常我们将它们写在一起:,称之为矩阵(matrix)。

我们可以将它的两个列理解为两个特殊的向量------新的 的位置。

现在,如果你有一个2×2矩阵,和一个2维向量,而你想知道这个矩阵描述的线性变换对这个向量的作用,你只需要取出向量的两个坐标,分别数乘矩阵的两个列向量,然后相加即可。我们在书写时把矩阵放在这个向量的左边,就像函数(f(x))一样。

换成一般形式,就是:

这就是矩阵向量乘法

总结

线性变换是一种操纵空间的手段,它保持网格平行等距分布且原点位置不变。 而这种变换我们只需要用变换后基向量的坐标就可以描述清楚,这些基向量坐标构成的矩阵提供了一种描述线性变换的语言,矩阵乘法就是计算这种线性变换作用的一个手段。

相关推荐
Alidme27 分钟前
cs106x-lecture14(Autumn 2017)-SPL实现
c++·学习·算法·codestepbystep·cs106x
小王努力学编程27 分钟前
【算法与数据结构】单调队列
数据结构·c++·学习·算法·leetcode
非 白36 分钟前
【Java】单例模式
java·笔记·单例模式
ZxsLoves40 分钟前
【【Systemverilog学习参考 简单的加法器验证-含覆盖率】】
学习·fpga开发
明阳mark1 小时前
Ansible 学习笔记
笔记·学习·ansible
~kiss~1 小时前
python的thrift2pyi学习
windows·python·学习
Evaporator Core2 小时前
MATLAB学习之旅:数据建模与仿真应用
开发语言·学习·matlab
大米洗澡2 小时前
数字签名技术基础
python·学习·程序人生·面试·职场和发展
StickToForever3 小时前
第4章 信息系统架构(六)
经验分享·笔记·学习·职场和发展
东方芷兰7 小时前
伯克利 CS61A 课堂笔记 11 —— Mutability
笔记·python