线性代数的本质 3 线性变换与矩阵

基于3Blue1Brown视频的笔记


线性变换(linear tranformation)

首先,什么是变换?变换实际就是函数(function)的一种,它**接受输入,并输出结果。**称之为变换则是在暗示从可视化的角度去看待它。

在线性代数中,我们往往**输入一个向量,输出一个新的向量。**如果一个变换接受一个向量,然后输出一个向量,我们就可以想象这个向量移动到新向量位置的过程。进一步地,我们可以想象整个平面的向量都做这个变换,移动到新的位置,这看起来就是整个平面在变形,变换给了我们扭曲空间的能力。

有非常多美妙而复杂的变换,而线性变换将变换限制为线性:

若一个变换具有以下两个性质,则说它是线性的:

  1. 所有直线在变换后还是直线
  2. 原点保持固定

描述线性变换------矩阵

现在的问题是,我们如何描述一个线性变换。也就是给出一定的描述或者操作,使得我们可以对所有向量这么做而得到变换后的新向量。

对于二维平面来说,我们实际上只需要知道基向量的新位置,其他向量都会随之而动。

这是由于线性变换本身的性质,而有一个重要的推论:一个向量如果是另两个向量的线性组合,则经过线性变换后,它仍然是它们相同的线性组合。

比如现在我们在原坐标系有个向量,这意味着这个向量可以如此表示: ,现在我们知道,变换之后到了原来的位置,而到了原来的位置,那么我们就可以计算的变换后的位置是

我们只需要记录下新的 的位置,我们就可以计算空间任意向量变换后到了哪里:对于任意的,我们通过来计算。也就是,我们只需要这两个信息,就可以掌握这个线性变换。

通常我们将它们写在一起:,称之为矩阵(matrix)。

我们可以将它的两个列理解为两个特殊的向量------新的 的位置。

现在,如果你有一个2×2矩阵,和一个2维向量,而你想知道这个矩阵描述的线性变换对这个向量的作用,你只需要取出向量的两个坐标,分别数乘矩阵的两个列向量,然后相加即可。我们在书写时把矩阵放在这个向量的左边,就像函数(f(x))一样。

换成一般形式,就是:

这就是矩阵向量乘法

总结

线性变换是一种操纵空间的手段,它保持网格平行等距分布且原点位置不变。 而这种变换我们只需要用变换后基向量的坐标就可以描述清楚,这些基向量坐标构成的矩阵提供了一种描述线性变换的语言,矩阵乘法就是计算这种线性变换作用的一个手段。

相关推荐
PerfumerKarma8 分钟前
【WebGPU学习杂记】数学基础拾遗(2)变换矩阵中的齐次坐标推导与几何理解
学习·线性代数·矩阵
knight_202420 分钟前
嵌入式学习日志————对射式红外传感器计次
stm32·单片机·嵌入式硬件·学习
go54631584651 小时前
基于分组规则的Excel数据分组优化系统设计与实现
人工智能·学习·生成对抗网络·数学建模·语音识别
##echo1 小时前
嵌入式Linux裸机开发笔记9(IMX6ULL)GPIO 中断实验(1)
linux·c语言·笔记·单片机·嵌入式硬件
●VON1 小时前
重生之我在暑假学习微服务第二天《MybatisPlus-下篇》
java·学习·微服务·架构·mybatis-plus
Yu_Lijing1 小时前
MySQL进阶学习与初阶复习第四天
数据库·学习·mysql
好学且牛逼的马3 小时前
学习随笔录
学习
我爱学嵌入式4 小时前
C语言第 9 天学习笔记:数组(二维数组与字符数组)
c语言·笔记·学习
im_AMBER7 小时前
学习日志19 python
python·学习
_Kayo_11 小时前
VUE2 学习笔记6 vue数据监测原理
vue.js·笔记·学习