Transformer的前世今生 day11(Transformer的流程)

Transformer的流程

  • 在机器翻译任务中,翻译第一个词,Transformer的流程为:
    1. 先将要翻译的句子,一个词一个词的转换为词向量送入编码器层,得到优化过的词向量以及K、V,
    2. 将K、V送入解码器层,并跟解码器层将要翻译的Q进行计算,来找出相匹配的K、V,
    3. 经过线性层和Softmax层得到最后翻译的结果,如下图:
  • 注意:翻译第一个词的时候,还没有已经生成好的词输入进解码器层
  • 在机器翻译任务中,翻译接下来的词,Transformer的流程为:
    1. 先将要翻译的句子,一个词一个词的转换为词向量送入编码器层,得到优化过的词向量以及K、V,
    2. 将K、V送入解码器层,同时,将之前已经生成的词也送入解码器层,并跟解码器层将要翻译的Q进行计算,来找出相匹配的K、V,
    3. 经过线性层和Softmax层得到最后翻译的结果,再将生成的词作为解码器层的输入再重复以上的步骤,当遇到<eos>时最后得到模型的输出,如下图:

Transformer的框架

相关推荐
Blossom.1181 小时前
使用Python和Scikit-Learn实现机器学习模型调优
开发语言·人工智能·python·深度学习·目标检测·机器学习·scikit-learn
scdifsn2 小时前
动手学深度学习12.7. 参数服务器-笔记&练习(PyTorch)
pytorch·笔记·深度学习·分布式计算·数据并行·参数服务器
DFminer2 小时前
【LLM】fast-api 流式生成测试
人工智能·机器人
郄堃Deep Traffic2 小时前
机器学习+城市规划第十四期:利用半参数地理加权回归来实现区域带宽不同的规划任务
人工智能·机器学习·回归·城市规划
海盗儿3 小时前
Attention Is All You Need (Transformer) 以及Transformer pytorch实现
pytorch·深度学习·transformer
GIS小天3 小时前
AI+预测3D新模型百十个定位预测+胆码预测+去和尾2025年6月7日第101弹
人工智能·算法·机器学习·彩票
阿部多瑞 ABU3 小时前
主流大语言模型安全性测试(三):阿拉伯语越狱提示词下的表现与分析
人工智能·安全·ai·语言模型·安全性测试
cnbestec4 小时前
Xela矩阵三轴触觉传感器的工作原理解析与应用场景
人工智能·线性代数·触觉传感器
不爱写代码的玉子4 小时前
HALCON透视矩阵
人工智能·深度学习·线性代数·算法·计算机视觉·矩阵·c#
sbc-study4 小时前
PCDF (Progressive Continuous Discrimination Filter)模块构建
人工智能·深度学习·计算机视觉