上位机图像处理和嵌入式模块部署(qmacvisual非opencv算法编写)

【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】

我们都知道,qmacvisual本身依赖于qt+opencv的实现。大部分的界面都是依赖于qt的实现。图像算法部分,也是大部分都依赖于opencv本身。但是,也有很多的算法,本身opencv是没有实现的,或者opencv的实现不满足我们的需求。这个时候,就需要我们自己利用cv::Mat结构来对像素进行一个一个的处理。今天,我们可以借着学习图像细化的机会,来看看怎么编写非opencv算法。

1、创建项目和创建流程

首先,还是根据qmacvisual的要求去创建项目和创建流程。

2、导入图像细化控件

图像细化控件的位置,在图像处理下面。用户可以直接用鼠标拖拉过来,如果不出意外,我们就可以看到这样的窗口,

图像中有两个地方需要配置,一个是输入的图像,一个是需要迭代的次数。我们看到,迭代之后的结果就是这样的一个细长的线条。大家可以想象下,它之前的图象是什么样的,

大家可以通过对比发现,整个图像细化的效果还是比较明显的。

3、完善测试流程

一般测试的时候,会添加一个图像显示的插件,这样流程比较完整一点。所以,最后整体的流程是这样的,

4、分析图像实现的实现

如果只是简单地分析功能,整个图像处理的流程还是比较简单的。我们比较关注的,更多的是整个功能怎么实现的。前面说过,它的算法是通过具体像素操作实现的,而不是opencv自带的算法。所以,在对应的实现函数中看到了这样的代码。

访问单个元素的话,可以这样来访问,即通过i和j,

复制代码
cv::Mat dst;
dst.at<uchar>(i, j) = 0;

代码中dst是cv::Mat结构。这种方法看上去没有什么问题,但是如果连续访问的话,效率比较低。因此,还有一种方法,就是通过首地址,即先访问一个元素的地址,后续通过这个地址来访问其他的像素。

复制代码
cv::Mat tmpimg;
uchar* img = tmpimg.data;

5,另外一种需要自定义算法的情形

如果opencv中没有相关的算法,这个时候用c/c++语言来实现,无可厚非。但是还有一种也是比较常见的,那就是opencv本身已经实现了相关的算法,但是我们用c/c++还要实现一遍。甚至很多的时候,还用汇编改写一遍。这里面最大的考虑就是效率。因为opencv里面的算法,主要是基于c/c++高级语言来完成的,它没有办法考虑不同硬件平台的差异。这个时候,为了提高算法的运行效率,最大化使用硬件的性能,改写opencv已有的算法也是常有的事情。

相关推荐
Valueyou247 分钟前
论文阅读——CenterNet
论文阅读·python·opencv·目标检测·计算机视觉
da_vinci_x9 分钟前
Substance 3D 材质流:AI 快速生成与程序化精修
人工智能·游戏·3d·材质·设计师·技术美术·游戏美术
aneasystone本尊14 分钟前
重温 Java 21 之密钥封装机制 API
人工智能
欢聚赢销CRM16 分钟前
从“各自为战“到“数据协同“:销采一体化CRM正在重构供应链竞争力
大数据·人工智能·重构·数据分析
IT_陈寒22 分钟前
Python 3.12 新特性实战:10个让你代码更优雅的隐藏技巧
前端·人工智能·后端
说私域24 分钟前
基于开源AI智能名片链动2+1模式与S2B2C商城小程序的商家活动策略研究
人工智能·小程序
亚马逊云开发者27 分钟前
Agentic AI基础设施实践经验系列(八):Agent应用的隐私和安全
人工智能
大模型真好玩33 分钟前
GPT-5.1 核心特性深度解析,它会是模型性能的新标杆吗?
人工智能
AndrewHZ38 分钟前
【图像处理基石】什么是光流法?
图像处理·算法·计算机视觉·目标跟踪·cv·光流法·行为识别
综合热讯1 小时前
微软Office下线“重用幻灯片”功能,WPS反向升级:AI让旧功能焕新生
人工智能·microsoft·wps