torchvision.datasets.ImageFolder

文章目录

什么是ImageFolder

torchvision.datasets.ImageFolder 是 PyTorch 中 torchvision 库提供的一个用于加载图像数据集的类,特别适用于处理按类别组织的图像数据集。通过使用 ImageFolder 类,你可以轻松地加载包含图像数据的文件夹,并且该类会自动根据文件夹结构解析出每个类别的图像数据

用代码来理解

假设我们有一个图像数据集,包含两个类别:"cat" 和 "dog",每个类别各有一些图像。数据集的目录结构如下:

dataset/

├── cat/

│ ├── cat001.jpg

│ ├── cat002.jpg

│ └── ...

└── dog/

├── dog001.jpg

├── dog002.jpg

└── ...

在这个例子中,"dataset" 文件夹下有一个名为 "cat" 的子文件夹和一个名为 "dog" 的子文件夹,分别存放了 "cat" 类别和 "dog" 类别的图像。每个子文件夹中包含该类别的多张图像。

接下来,我们可以使用 ImageFolder 类来加载这个数据集,并查看返回的内容是什么:

python 复制代码
import torch
from torchvision import datasets, transforms

# 定义数据转换
transform = transforms.Compose([
    transforms.Resize((224, 224)),  # 调整图像大小
    transforms.ToTensor(),           # 将图像转换为Tensor
])

# 加载数据集
dataset = datasets.ImageFolder('dataset', transform=transform)

# 查看数据集中的内容
print(dataset.classes)  # 打印类别列表
print(dataset.class_to_idx)  # 打印类别到索引的映射
print(dataset.imgs)  # 打印图像路径列表

dataset.classes 返回的结果会是 ['cat', 'dog'],表示数据集中包含的类别

dataset.class_to_idx 返回的结果可能是 {'cat': 0, 'dog': 1},表示每个类别对应的索引

而 dataset.imgs 则会返回一个列表,其中每个元素对应一个元组 (image_path, class_index),包含了图像的路径和对应的类别索引。

用法

python 复制代码
import torch
from torchvision import datasets, transforms

# 定义数据转换
transform = transforms.Compose([
    transforms.Resize((224, 224)),  # 调整图像大小
    transforms.ToTensor(),           # 将图像转换为Tensor
])

# 加载数据集
dataset = datasets.ImageFolder('path/to/dataset', transform=transform)

# 创建数据加载器
data_loader = torch.utils.data.DataLoader(dataset, batch_size=32, shuffle=True)
相关推荐
编码小哥5 小时前
OpenCV Haar级联分类器:人脸检测入门
人工智能·计算机视觉·目标跟踪
程序员:钧念5 小时前
深度学习与强化学习的区别
人工智能·python·深度学习·算法·transformer·rag
数据与后端架构提升之路5 小时前
TeleTron 源码揭秘:如何用适配器模式“无缝魔改” Megatron-Core?
人工智能·python·适配器模式
Chef_Chen6 小时前
数据科学每日总结--Day44--机器学习
人工智能·机器学习
这张生成的图像能检测吗6 小时前
(论文速读)FR-IQA:面向广义图像质量评价:放松完美参考质量假设
人工智能·计算机视觉·图像增强·图像质量评估指标
KG_LLM图谱增强大模型6 小时前
本体论与知识图谱:揭示语义技术的核心差异
人工智能·知识图谱·本体论
JicasdC123asd7 小时前
黄瓜植株目标检测:YOLOv8结合Fasternet与BiFPN的高效改进方案
人工智能·yolo·目标检测
爱吃泡芙的小白白7 小时前
深入解析:2024年AI大模型核心算法与应用全景
人工智能·算法·大模型算法
哥布林学者8 小时前
吴恩达深度学习课程五:自然语言处理 第二周:词嵌入(二)词嵌入模型原理
深度学习·ai
小程故事多_808 小时前
攻克RAG系统最后一公里 图文混排PDF解析的挑战与实战方案
人工智能·架构·pdf·aigc