torchvision.datasets.ImageFolder

文章目录

什么是ImageFolder

torchvision.datasets.ImageFolder 是 PyTorch 中 torchvision 库提供的一个用于加载图像数据集的类,特别适用于处理按类别组织的图像数据集。通过使用 ImageFolder 类,你可以轻松地加载包含图像数据的文件夹,并且该类会自动根据文件夹结构解析出每个类别的图像数据

用代码来理解

假设我们有一个图像数据集,包含两个类别:"cat" 和 "dog",每个类别各有一些图像。数据集的目录结构如下:

dataset/

├── cat/

│ ├── cat001.jpg

│ ├── cat002.jpg

│ └── ...

└── dog/

├── dog001.jpg

├── dog002.jpg

└── ...

在这个例子中,"dataset" 文件夹下有一个名为 "cat" 的子文件夹和一个名为 "dog" 的子文件夹,分别存放了 "cat" 类别和 "dog" 类别的图像。每个子文件夹中包含该类别的多张图像。

接下来,我们可以使用 ImageFolder 类来加载这个数据集,并查看返回的内容是什么:

python 复制代码
import torch
from torchvision import datasets, transforms

# 定义数据转换
transform = transforms.Compose([
    transforms.Resize((224, 224)),  # 调整图像大小
    transforms.ToTensor(),           # 将图像转换为Tensor
])

# 加载数据集
dataset = datasets.ImageFolder('dataset', transform=transform)

# 查看数据集中的内容
print(dataset.classes)  # 打印类别列表
print(dataset.class_to_idx)  # 打印类别到索引的映射
print(dataset.imgs)  # 打印图像路径列表

dataset.classes 返回的结果会是 ['cat', 'dog'],表示数据集中包含的类别

dataset.class_to_idx 返回的结果可能是 {'cat': 0, 'dog': 1},表示每个类别对应的索引

而 dataset.imgs 则会返回一个列表,其中每个元素对应一个元组 (image_path, class_index),包含了图像的路径和对应的类别索引。

用法

python 复制代码
import torch
from torchvision import datasets, transforms

# 定义数据转换
transform = transforms.Compose([
    transforms.Resize((224, 224)),  # 调整图像大小
    transforms.ToTensor(),           # 将图像转换为Tensor
])

# 加载数据集
dataset = datasets.ImageFolder('path/to/dataset', transform=transform)

# 创建数据加载器
data_loader = torch.utils.data.DataLoader(dataset, batch_size=32, shuffle=True)
相关推荐
一切皆有可能!!4 小时前
实践篇:利用ragas在自己RAG上实现LLM评估②
人工智能·语言模型
月白风清江有声6 小时前
爆炸仿真的学习日志
人工智能
华奥系科技7 小时前
智慧水务发展迅猛:从物联网架构到AIoT系统的跨越式升级
人工智能·物联网·智慧城市
R²AIN SUITE7 小时前
MCP协议重构AI Agent生态:万能插槽如何终结工具孤岛?
人工智能
b***25117 小时前
动力电池点焊机:驱动电池焊接高效与可靠的核心力量|比斯特自动化
人工智能·科技·自动化
Gyoku Mint8 小时前
机器学习×第二卷:概念下篇——她不再只是模仿,而是开始决定怎么靠近你
人工智能·python·算法·机器学习·pandas·ai编程·matplotlib
小和尚同志8 小时前
通俗易懂的 MCP 概念入门
人工智能·aigc
dudly8 小时前
大语言模型评测体系全解析(下篇):工具链、学术前沿与实战策略
人工智能·语言模型
zzlyx998 小时前
AI大数据模型如何与thingsboard物联网结合
人工智能·物联网