torchvision.datasets.ImageFolder

文章目录

什么是ImageFolder

torchvision.datasets.ImageFolder 是 PyTorch 中 torchvision 库提供的一个用于加载图像数据集的类,特别适用于处理按类别组织的图像数据集。通过使用 ImageFolder 类,你可以轻松地加载包含图像数据的文件夹,并且该类会自动根据文件夹结构解析出每个类别的图像数据

用代码来理解

假设我们有一个图像数据集,包含两个类别:"cat" 和 "dog",每个类别各有一些图像。数据集的目录结构如下:

dataset/

├── cat/

│ ├── cat001.jpg

│ ├── cat002.jpg

│ └── ...

└── dog/

├── dog001.jpg

├── dog002.jpg

└── ...

在这个例子中,"dataset" 文件夹下有一个名为 "cat" 的子文件夹和一个名为 "dog" 的子文件夹,分别存放了 "cat" 类别和 "dog" 类别的图像。每个子文件夹中包含该类别的多张图像。

接下来,我们可以使用 ImageFolder 类来加载这个数据集,并查看返回的内容是什么:

python 复制代码
import torch
from torchvision import datasets, transforms

# 定义数据转换
transform = transforms.Compose([
    transforms.Resize((224, 224)),  # 调整图像大小
    transforms.ToTensor(),           # 将图像转换为Tensor
])

# 加载数据集
dataset = datasets.ImageFolder('dataset', transform=transform)

# 查看数据集中的内容
print(dataset.classes)  # 打印类别列表
print(dataset.class_to_idx)  # 打印类别到索引的映射
print(dataset.imgs)  # 打印图像路径列表

dataset.classes 返回的结果会是 ['cat', 'dog'],表示数据集中包含的类别

dataset.class_to_idx 返回的结果可能是 {'cat': 0, 'dog': 1},表示每个类别对应的索引

而 dataset.imgs 则会返回一个列表,其中每个元素对应一个元组 (image_path, class_index),包含了图像的路径和对应的类别索引。

用法

python 复制代码
import torch
from torchvision import datasets, transforms

# 定义数据转换
transform = transforms.Compose([
    transforms.Resize((224, 224)),  # 调整图像大小
    transforms.ToTensor(),           # 将图像转换为Tensor
])

# 加载数据集
dataset = datasets.ImageFolder('path/to/dataset', transform=transform)

# 创建数据加载器
data_loader = torch.utils.data.DataLoader(dataset, batch_size=32, shuffle=True)
相关推荐
格林威1 分钟前
AOI在FPC制造领域的检测应用
人工智能·数码相机·计算机视觉·目标跟踪·视觉检测·制造
utmhikari16 分钟前
【GitHub探索】代码开发AI辅助工具trae-agent
人工智能·ai·大模型·llm·github·agent·trae
IT_陈寒30 分钟前
Python数据处理速度慢?5行代码让你的Pandas提速300% 🚀
前端·人工智能·后端
NewCarRen33 分钟前
基于健康指标的自动驾驶全系统运行时安全分析方法
人工智能·安全·自动驾驶·预期功能安全
初心丨哈士奇36 分钟前
前端Vibe Coding探索:Cursor+MCP打造沉浸式开发流(使用MCP与Cursor Rules让Vibe Coding更快速与精准)
前端·人工智能
艾莉丝努力练剑1 小时前
【Git:基本操作】深度解析Git:从初始Git到熟悉基本操作
大数据·linux·c++·人工智能·git·gitee·指令
机器之心1 小时前
上海AI Lab发布混合扩散语言模型SDAR:首个突破6600 tgs的开源扩散语言模型
人工智能·openai
wwlsm_zql1 小时前
AI安防革新揭秘:智能体技术引领城市安全新纪元
人工智能·安全
AI_56781 小时前
AI换脸技术安全指南:3条法律红线与合规实践
人工智能·学习·it
明月照山海-1 小时前
机器学习周报二十
人工智能·机器学习