torchvision.datasets.ImageFolder

文章目录

什么是ImageFolder

torchvision.datasets.ImageFolder 是 PyTorch 中 torchvision 库提供的一个用于加载图像数据集的类,特别适用于处理按类别组织的图像数据集。通过使用 ImageFolder 类,你可以轻松地加载包含图像数据的文件夹,并且该类会自动根据文件夹结构解析出每个类别的图像数据

用代码来理解

假设我们有一个图像数据集,包含两个类别:"cat" 和 "dog",每个类别各有一些图像。数据集的目录结构如下:

dataset/

├── cat/

│ ├── cat001.jpg

│ ├── cat002.jpg

│ └── ...

└── dog/

├── dog001.jpg

├── dog002.jpg

└── ...

在这个例子中,"dataset" 文件夹下有一个名为 "cat" 的子文件夹和一个名为 "dog" 的子文件夹,分别存放了 "cat" 类别和 "dog" 类别的图像。每个子文件夹中包含该类别的多张图像。

接下来,我们可以使用 ImageFolder 类来加载这个数据集,并查看返回的内容是什么:

python 复制代码
import torch
from torchvision import datasets, transforms

# 定义数据转换
transform = transforms.Compose([
    transforms.Resize((224, 224)),  # 调整图像大小
    transforms.ToTensor(),           # 将图像转换为Tensor
])

# 加载数据集
dataset = datasets.ImageFolder('dataset', transform=transform)

# 查看数据集中的内容
print(dataset.classes)  # 打印类别列表
print(dataset.class_to_idx)  # 打印类别到索引的映射
print(dataset.imgs)  # 打印图像路径列表

dataset.classes 返回的结果会是 ['cat', 'dog'],表示数据集中包含的类别

dataset.class_to_idx 返回的结果可能是 {'cat': 0, 'dog': 1},表示每个类别对应的索引

而 dataset.imgs 则会返回一个列表,其中每个元素对应一个元组 (image_path, class_index),包含了图像的路径和对应的类别索引。

用法

python 复制代码
import torch
from torchvision import datasets, transforms

# 定义数据转换
transform = transforms.Compose([
    transforms.Resize((224, 224)),  # 调整图像大小
    transforms.ToTensor(),           # 将图像转换为Tensor
])

# 加载数据集
dataset = datasets.ImageFolder('path/to/dataset', transform=transform)

# 创建数据加载器
data_loader = torch.utils.data.DataLoader(dataset, batch_size=32, shuffle=True)
相关推荐
数科云3 小时前
AI提示词(Prompt)入门:什么是Prompt?为什么要写好Prompt?
人工智能·aigc·ai写作·ai工具集·最新ai资讯
Devlive 开源社区3 小时前
技术日报|Claude Code超级能力库superpowers登顶日增1538星,自主AI循环ralph爆火登榜第二
人工智能
软件供应链安全指南4 小时前
灵脉 IAST 5.4 升级:双轮驱动 AI 漏洞治理与业务逻辑漏洞精准检测
人工智能·安全
lanmengyiyu4 小时前
单塔和双塔的区别和共同点
人工智能·双塔模型·网络结构·单塔模型
微光闪现4 小时前
AI识别宠物焦虑、紧张和晕车行为,是否已经具备实际可行性?
大数据·人工智能·宠物
技术小黑屋_4 小时前
用好Few-shot Prompting,AI 准确率提升100%
人工智能
中草药z4 小时前
【嵌入模型】概念、应用与两大 AI 开源社区(Hugging Face / 魔塔)
人工智能·算法·机器学习·数据集·向量·嵌入模型
知乎的哥廷根数学学派5 小时前
基于数据驱动的自适应正交小波基优化算法(Python)
开发语言·网络·人工智能·pytorch·python·深度学习·算法
DisonTangor5 小时前
GLM-Image:面向密集知识与高保真图像生成的自回归模型
人工智能·ai作画·数据挖掘·回归·aigc
哥布林学者5 小时前
吴恩达深度学习课程五:自然语言处理 第二周:词嵌入(一)词汇表征和类比推理
深度学习·ai