flink: 向clickhouse写数据

一、依赖

复制代码
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>org.example</groupId>
    <artifactId>flink-proj</artifactId>
    <version>1.0-SNAPSHOT</version>

    <properties>
        <maven.compiler.source>8</maven.compiler.source>
        <maven.compiler.target>8</maven.compiler.target>
    </properties>
    <dependencies>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-java</artifactId>
            <version>1.11.1</version>
        </dependency>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-csv</artifactId>
            <version>1.11.1</version>
        </dependency>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-java_2.11</artifactId>
            <version>1.11.1</version>
        </dependency>

<!--        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-table_2.11</artifactId>
            <version>1.11.1</version>
        </dependency>-->

        <!-- https://mvnrepository.com/artifact/org.apache.flink/flink-table-api-java -->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-table-api-java</artifactId>
            <version>1.11.1</version>
        </dependency>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-table-planner-blink_2.11</artifactId>
            <version>1.11.1</version>
        </dependency>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-table-planner_2.11</artifactId>
            <version>1.11.1</version>
        </dependency>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-table-api-java-bridge_2.11</artifactId>
            <version>1.11.1</version>
        </dependency>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-json</artifactId>
            <version>1.11.1</version>
        </dependency>


        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-clients_2.11</artifactId>
            <version>1.11.1</version>
        </dependency>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-kafka_2.11</artifactId>
            <version>1.11.1</version>
        </dependency>

        <!-- https://mvnrepository.com/artifact/org.apache.bahir/flink-connector-redis -->
        <dependency>
            <groupId>org.apache.bahir</groupId>
            <artifactId>flink-connector-redis_2.12</artifactId>
            <version>1.1.0</version>
        </dependency>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-elasticsearch7_2.12</artifactId>
            <version>1.11.1</version>
        </dependency>

        <!-- https://mvnrepository.com/artifact/org.apache.logging.log4j/log4j-core -->
        <dependency>
            <groupId>org.apache.logging.log4j</groupId>
            <artifactId>log4j-core</artifactId>
            <version>2.22.1</version>
        </dependency>

        <!-- https://mvnrepository.com/artifact/org.slf4j/slf4j-log4j12 -->
        <dependency>
            <groupId>org.slf4j</groupId>
            <artifactId>slf4j-log4j12</artifactId>
            <version>2.0.12</version>
        </dependency>

        <dependency>
            <groupId>mysql</groupId>
            <artifactId>mysql-connector-java</artifactId>
            <version>5.1.30</version>
        </dependency>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-jdbc_2.12</artifactId>
            <version>1.11.1</version>
        </dependency>

        <dependency>
            <groupId>ru.yandex.clickhouse</groupId>
            <artifactId>clickhouse-jdbc</artifactId>
            <version>0.3.2</version>
        </dependency>





    </dependencies>

</project>

二、clickhouse中建表

复制代码
create table userinfo(username varchar(100) primary key,passwd varchar(100));

三、通过Sink把从文件中读取的内容写到clickhouse

复制代码
package cn.edu.tju.demo;

import org.apache.flink.connector.jdbc.JdbcConnectionOptions;
import org.apache.flink.connector.jdbc.JdbcSink;
import org.apache.flink.connector.jdbc.JdbcStatementBuilder;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

import java.sql.PreparedStatement;
import java.sql.SQLException;

public class Test16B {
    private static String CLICKHOUSE_SERVER = "xx.xx.xx.xx";
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment environment = StreamExecutionEnvironment
                .getExecutionEnvironment();

        DataStream<String> mySource = environment.readTextFile("demo.txt");

        String sql = "insert into userinfo(username,passwd) values(?,?) ";
        JdbcConnectionOptions jdbcBuild = new JdbcConnectionOptions.JdbcConnectionOptionsBuilder()
                .withDriverName("ru.yandex.clickhouse.ClickHouseDriver")
                .withUrl("jdbc:clickhouse://" + CLICKHOUSE_SERVER + ":8123/default")
                .withUsername("default")
                .withPassword("yourpassword")
                .build();

        mySource.addSink(JdbcSink.sink(sql, new JdbcStatementBuilder<String>() {
            @Override
            public void accept(PreparedStatement ps, String s) throws SQLException {
                ps.setString(1, s);
                ps.setString(2, s);

            }
        }, jdbcBuild));

        environment.execute("my job");

    }







}
相关推荐
二进制_博客23 分钟前
spark on hive 还是 hive on spark?
大数据·hive·spark
智海观潮36 分钟前
Spark RDD详解 —— RDD特性、lineage、缓存、checkpoint、依赖关系
大数据·缓存·spark
一个会的不多的人4 小时前
数字化转型:概念性名词浅谈(第七十二讲)
大数据·人工智能·制造·数字化转型
数据智能老司机4 小时前
在 Databricks 上的 Unity Catalog 数据治理——Unity Catalog 的内部机制
大数据·架构
gb42152876 小时前
elasticsearch索引多长时间刷新一次(智能刷新索引根据数据条数去更新)
大数据·elasticsearch·jenkins
IT毕设梦工厂7 小时前
大数据毕业设计选题推荐-基于大数据的人体生理指标管理数据可视化分析系统-Hadoop-Spark-数据可视化-BigData
大数据·hadoop·信息可视化·spark·毕业设计·源码·bigdata
数在表哥7 小时前
从数据沼泽到智能决策:数据驱动与AI融合的中台建设方法论与技术实践指南(四)
大数据·人工智能
爱思德学术7 小时前
中国计算机学会(CCF)推荐学术会议-C(数据库/数据挖掘/内容检索):PAKDD 2026
大数据·机器学习·数据挖掘·知识发现
云淡风轻~~9 小时前
构建和部署Spark、Hadoop与Zeppelin集成环境
大数据·hadoop·spark
IT研究室9 小时前
大数据毕业设计选题推荐-基于大数据的人体体能活动能量消耗数据分析与可视化系统-大数据-Spark-Hadoop-Bigdata
大数据·hadoop·数据分析·spark·毕业设计·源码·bigdata