《论文阅读》PAGE:一个用于会话情绪原因蕴含基于位置感知的图模型 ICASSP 2023

《论文阅读》PAGE:一个用于会话情绪原因蕴含基于位置感知的图模型 ICASSP 2023

前言

亲身阅读感受分享,细节画图解释,再也不用担心看不懂论文啦~

无抄袭,无复制,纯手工敲击键盘~

今天为大家带来的是《PAGE: A POSITION-AWARE GRAPH-BASED MODEL FOR EMOTION CAUSE ENTAILMENT IN CONVERSATION》


出版: ICASSP

时间:2023

类型:因果情绪蕴含

关键词:位置感知;情绪原因;蕴含;对话系统;图网络

作者:Xiaojie Gu, Renze Lou等

第一作者机构:Department of Computer Science, Hangzhou City University, Hangzhou, China

简介

我们通过举例来讲解作者的思路

A:"Hey, you wanna see a movie tomorrow?"

B:"Sounds like a good plan."

作者在论文中提及,如果将上述语句调换位置,则无法推断出"a good plan"其实就是指的前文提及的"see a movie"事件

因此,作者构建基于相对位置的位置关系,用于感知说话者不同语句之间的依赖关系

任务定义

在对话历史中寻找导致当前语句产生非中性情绪的原因句子

模型构架

主要包含三个模块:

1)带有情绪的语句编码(Utterances Encoding with Emotion)

2)位置感知的图(Position-aware Graph (PaG))

3)因果分类器(Causal Classifier)

Utterances Encoding with Emotion

语句和情绪分别编码,然后两者维度变换到相同维度之后相加,得到 h c h_c hc ,之后经过自注意力层和 MLP 等得到最终的 h n h_n hn

Position-aware Graph

  • 考虑到相对位置在语句之间的因果原因的转化具有重要意义
  • 考虑到相同或不同说话者句子之间的序列关系对于理解信息、增强蕴含有效果

图构建

包含节点、边( G = ( V , E , R ) \mathcal{G}=(\mathcal{V},\mathcal{E},\mathcal{R}) G=(V,E,R))

E \mathcal{E} E 包含所有对应的三元组 ( u o , r o , t , u t ) (u_o,r_{o,t},u_t) (uo,ro,t,ut)

下图为边的计算过程,首先计算距离 D o , t D_{o,t} Do,t ,然后这只一个窗口大小 w w w ,然后结合 D o , t D_{o,t} Do,t 和 w w w 来计算 r o , t r_{o,t} ro,t

图更新

相邻节点进行更新,其中 c t , r c_{t,r} ct,r 为正则化常数

Causal Classifier

p ^ o , t = σ ( MLP ( h o ′ ⊕ h t ′ ) ) (1) \hat{p}_{o,t}=\sigma(\texttt{MLP}(h_o'\oplus h_t'))\tag1 p^o,t=σ(MLP(ho′⊕ht′))(1)

将头节点和尾节点的表示相邻合并,然后输入MLP进行预测

实验结果

此外作者对Position-aware Graph提及的窗口大小进行了实验,发现随着窗口变大,图网络复杂性也随之增加,虽然小窗口表示只有目标话语的邻接矩阵,但是具有信息丰富的位置信号。经过实验表明,窗口大小为3时最为适中

相关推荐
CV-杨帆8 小时前
论文阅读:arxiv 2025 A Survey of Large Language Model Agents for Question Answering
论文阅读·人工智能·语言模型
李加号pluuuus10 小时前
【论文阅读】Diffuse and Disperse: Image Generation with Representation Regularization
论文阅读
张较瘦_10 小时前
[论文阅读] 人工智能 + 软件工程 | 当LLMs遇上顺序API调用:StateGen与StateEval如何破解测试难题?
论文阅读·人工智能
berling0010 小时前
【论文阅读 | CVPR 2023 |CDDFuse:基于相关性驱动的双分支特征分解的多模态图像融合】
论文阅读
李加号pluuuus10 小时前
【论文阅读】Masked Autoencoders Are Effective Tokenizers for Diffusion Models
论文阅读
berling001 天前
【论文阅读 | IF 2025 | COMO:用于多模态目标检测的跨 Mamba 交互与偏移引导融合】
论文阅读·人工智能·目标检测
张较瘦_2 天前
[论文阅读] 人工智能 + 软件工程 | 开源软件中的GenAI自白:开发者如何用、项目如何管、代码质量受何影响?
论文阅读·人工智能·软件工程
dundunmm2 天前
【论文阅读】A Survey on Knowledge-Oriented Retrieval-Augmented Generation(4)
论文阅读·大模型·llm·rag·检索增强生成·评估标准
CV-杨帆3 天前
论文阅读:arxiv 2025 A Survey on Data Contamination for Large Language Models
论文阅读·人工智能·语言模型
Jamence3 天前
多模态大语言模型arxiv论文略读(157)
论文阅读·人工智能·语言模型·自然语言处理·论文笔记