话不多说,我们直接进入babyAGI的核心部分,也就是task agent部分。
1. 创建任务agent
这一段代码的任务是创建一个任务,这个函数有四个参数
objective
目标result
结果,dict类型task_list
任务清单task_descritption
任务描述
将结果存放到out这个dict中返回。
在prompt中,指定了
You are to use the result from an execution agent to create new tasks with the following objective: {objective}.
角色和目标,当然目标不论是人工智能还是人类,都是很重要的一点。值得注意的,角色和能力都在prompt最开始就以指定,作为一个背景的存在。
接着输入上一个完成的任务的结果和任务描述,然后拼接未完成的任务清单。
最后加入任务的一些规范,新任务不得与未完成任务重复和输出prompt的样式规范等。
整体来看,整个prompt的架构按顺序是
- 指定角色和任务
- 描述详细内容
- 指定输出格式和规则
这是一个优秀的prompt案例,大家可以学习一下。
python
def task_creation_agent(
objective: str, result: Dict, task_description: str, task_list: List[str]
):
prompt = f"""
You are to use the result from an execution agent to create new tasks with the following objective: {objective}.
The last completed task has the result: \n{result["data"]}
This result was based on this task description: {task_description}.\n"""
if task_list:
prompt += f"These are incomplete tasks: {', '.join(task_list)}\n"
prompt += "Based on the result, return a list of tasks to be completed in order to meet the objective. "
if task_list:
prompt += "These new tasks must not overlap with incomplete tasks. "
prompt += """
Return one task per line in your response. The result must be a numbered list in the format:
#. First task
#. Second task
The number of each entry must be followed by a period. If your list is empty, write "There are no tasks to add at this time."
Unless your list is empty, do not include any headers before your numbered list or follow your numbered list with any other output."""
print(f'\n*****TASK CREATION AGENT PROMPT****\n{prompt}\n')
response = openai_call(prompt, max_tokens=2000)
print(f'\n****TASK CREATION AGENT RESPONSE****\n{response}\n')
new_tasks = response.split('\n')
new_tasks_list = []
for task_string in new_tasks:
task_parts = task_string.strip().split(".", 1)
if len(task_parts) == 2:
task_id = ''.join(s for s in task_parts[0] if s.isnumeric())
task_name = re.sub(r'[^\w\s_]+', '', task_parts[1]).strip()
if task_name.strip() and task_id.isnumeric():
new_tasks_list.append(task_name)
# print('New task created: ' + task_name)
out = [{"task_name": task_name} for task_name in new_tasks_list]
return out
2. 任务优先级排序agent
这段代码主要是调用openAI对已存储的任务清单进行优先级排序,返回一个新的任务列表。
这段代码可以看一下,prompt的编写,整体和上面的差异不大。
python
def prioritization_agent():
task_names = tasks_storage.get_task_names()
bullet_string = '\n'
prompt = f"""
You are tasked with prioritizing the following tasks: {bullet_string + bullet_string.join(task_names)}
Consider the ultimate objective of your team: {OBJECTIVE}.
Tasks should be sorted from highest to lowest priority, where higher-priority tasks are those that act as pre-requisites or are more essential for meeting the objective.
Do not remove any tasks. Return the ranked tasks as a numbered list in the format:
#. First task
#. Second task
The entries must be consecutively numbered, starting with 1. The number of each entry must be followed by a period.
Do not include any headers before your ranked list or follow your list with any other output."""
print(f'\n****TASK PRIORITIZATION AGENT PROMPT****\n{prompt}\n')
response = openai_call(prompt, max_tokens=2000)
print(f'\n****TASK PRIORITIZATION AGENT RESPONSE****\n{response}\n')
if not response:
print('Received empty response from priotritization agent. Keeping task list unchanged.')
return
new_tasks = response.split("\n") if "\n" in response else [response]
new_tasks_list = []
for task_string in new_tasks:
task_parts = task_string.strip().split(".", 1)
if len(task_parts) == 2:
task_id = ''.join(s for s in task_parts[0] if s.isnumeric())
task_name = re.sub(r'[^\w\s_]+', '', task_parts[1]).strip()
if task_name.strip():
new_tasks_list.append({"task_id": task_id, "task_name": task_name})
return new_tasks_list
3. 执行任务agent
这两段段代码执行五个基于目标的优先级比较高的任务。
这段代码是从结果存储中,根据查询内容获取top_results_nums
个任务。
python
# Get the top n completed tasks for the objective
def context_agent(query: str, top_results_num: int):
"""
Retrieves context for a given query from an index of tasks.
Args:
query (str): The query or objective for retrieving context.
top_results_num (int): The number of top results to retrieve.
Returns:
list: A list of tasks as context for the given query, sorted by relevance.
"""
results = results_storage.query(query=query, top_results_num=top_results_num)
# print("****RESULTS****")
# print(results)
return results
这段代码是通过OpenAI API执行agent,整个prompt的结构同样是
- 先说明目标
- 拼接已完成的上下文,详细内容
- 再表明你的任务
python
# Execute a task based on the objective and five previous tasks
def execution_agent(objective: str, task: str) -> str:
"""
Executes a task based on the given objective and previous context.
Args:
objective (str): The objective or goal for the AI to perform the task.
task (str): The task to be executed by the AI.
Returns:
str: The response generated by the AI for the given task.
"""
context = context_agent(query=objective, top_results_num=5)
# print("\n****RELEVANT CONTEXT****\n")
# print(context)
# print('')
prompt = f'Perform one task based on the following objective: {objective}.\n'
if context:
prompt += 'Take into account these previously completed tasks:' + '\n'.join(context)
prompt += f'\nYour task: {task}\nResponse:'
return openai_call(prompt, max_tokens=2000)
这两段代码不知道为什么带上注释了,可能是作者买了coplit了吧😂
4. 任务主体
下面就是整体代码的最终部分了,主程序部分
主程序是一个大的死循环,主要分为三步
- 获取
task_storage
中第一个未完成的任务,执行execution_agent
,传入目标和未完成的任务,获取result
- 重新包装
result
和result_id
,并将结果存放到result_storage
中,而这个result_storage
正式之前配置的向量数据库 - 创建新任务,并重新排列任务优先级,这里只有设置了cooperative mode才会执行这个,这里我们也可以理解,当有多个线程同时参与时,需要进行优先级排序,防止重复执行任务
整体项目来看的话,就是一个执行任务-分解任务-执行任务的循环,当列表为空时,任务执行完成。
python
# Add the initial task if starting new objective
if not JOIN_EXISTING_OBJECTIVE:
initial_task = {
"task_id": tasks_storage.next_task_id(),
"task_name": INITIAL_TASK
}
tasks_storage.append(initial_task)
def main():
loop = True
while loop:
# As long as there are tasks in the storage...
if not tasks_storage.is_empty():
# Print the task list
print("\033[95m\033[1m" + "\n*****TASK LIST*****\n" + "\033[0m\033[0m")
for t in tasks_storage.get_task_names():
print(" • " + str(t))
# Step 1: Pull the first incomplete task
task = tasks_storage.popleft()
print("\033[92m\033[1m" + "\n*****NEXT TASK*****\n" + "\033[0m\033[0m")
print(str(task["task_name"]))
# Send to execution function to complete the task based on the context
result = execution_agent(OBJECTIVE, str(task["task_name"]))
print("\033[93m\033[1m" + "\n*****TASK RESULT*****\n" + "\033[0m\033[0m")
print(result)
# Step 2: Enrich result and store in the results storage
# This is where you should enrich the result if needed
enriched_result = {
"data": result
}
# extract the actual result from the dictionary
# since we don't do enrichment currently
# vector = enriched_result["data"]
result_id = f"result_{task['task_id']}"
results_storage.add(task, result, result_id)
# Step 3: Create new tasks and re-prioritize task list
# only the main instance in cooperative mode does that
new_tasks = task_creation_agent(
OBJECTIVE,
enriched_result,
task["task_name"],
tasks_storage.get_task_names(),
)
print('Adding new tasks to task_storage')
for new_task in new_tasks:
new_task.update({"task_id": tasks_storage.next_task_id()})
print(str(new_task))
tasks_storage.append(new_task)
if not JOIN_EXISTING_OBJECTIVE:
prioritized_tasks = prioritization_agent()
if prioritized_tasks:
tasks_storage.replace(prioritized_tasks)
# Sleep a bit before checking the task list again
time.sleep(5)
else:
print('Done.')
loop = False
if __name__ == "__main__":
main()
这就是整体的项目代码,下一篇,我们整体来看看AGI的原理,做个总结。