BabyAGI源码解读(2)-核心agents部分

话不多说,我们直接进入babyAGI的核心部分,也就是task agent部分。

1. 创建任务agent

这一段代码的任务是创建一个任务,这个函数有四个参数

  • objective 目标
  • result 结果,dict类型
  • task_list 任务清单
  • task_descritption 任务描述

将结果存放到out这个dict中返回。

在prompt中,指定了

You are to use the result from an execution agent to create new tasks with the following objective: {objective}.

角色和目标,当然目标不论是人工智能还是人类,都是很重要的一点。值得注意的,角色和能力都在prompt最开始就以指定,作为一个背景的存在。

接着输入上一个完成的任务的结果和任务描述,然后拼接未完成的任务清单。

最后加入任务的一些规范,新任务不得与未完成任务重复和输出prompt的样式规范等。

整体来看,整个prompt的架构按顺序是

  1. 指定角色和任务
  2. 描述详细内容
  3. 指定输出格式和规则

这是一个优秀的prompt案例,大家可以学习一下。

python 复制代码
def task_creation_agent(
        objective: str, result: Dict, task_description: str, task_list: List[str]
):
    prompt = f"""
You are to use the result from an execution agent to create new tasks with the following objective: {objective}.
The last completed task has the result: \n{result["data"]}
This result was based on this task description: {task_description}.\n"""

    if task_list:
        prompt += f"These are incomplete tasks: {', '.join(task_list)}\n"
    prompt += "Based on the result, return a list of tasks to be completed in order to meet the objective. "
    if task_list:
        prompt += "These new tasks must not overlap with incomplete tasks. "

    prompt += """
Return one task per line in your response. The result must be a numbered list in the format:

#. First task
#. Second task

The number of each entry must be followed by a period. If your list is empty, write "There are no tasks to add at this time."
Unless your list is empty, do not include any headers before your numbered list or follow your numbered list with any other output."""

    print(f'\n*****TASK CREATION AGENT PROMPT****\n{prompt}\n')
    response = openai_call(prompt, max_tokens=2000)
    print(f'\n****TASK CREATION AGENT RESPONSE****\n{response}\n')
    new_tasks = response.split('\n')
    new_tasks_list = []
    for task_string in new_tasks:
        task_parts = task_string.strip().split(".", 1)
        if len(task_parts) == 2:
            task_id = ''.join(s for s in task_parts[0] if s.isnumeric())
            task_name = re.sub(r'[^\w\s_]+', '', task_parts[1]).strip()
            if task_name.strip() and task_id.isnumeric():
                new_tasks_list.append(task_name)
            # print('New task created: ' + task_name)

    out = [{"task_name": task_name} for task_name in new_tasks_list]
    return out

2. 任务优先级排序agent

这段代码主要是调用openAI对已存储的任务清单进行优先级排序,返回一个新的任务列表。

这段代码可以看一下,prompt的编写,整体和上面的差异不大。

python 复制代码
def prioritization_agent():
    task_names = tasks_storage.get_task_names()
    bullet_string = '\n'

    prompt = f"""
You are tasked with prioritizing the following tasks: {bullet_string + bullet_string.join(task_names)}
Consider the ultimate objective of your team: {OBJECTIVE}.
Tasks should be sorted from highest to lowest priority, where higher-priority tasks are those that act as pre-requisites or are more essential for meeting the objective.
Do not remove any tasks. Return the ranked tasks as a numbered list in the format:

#. First task
#. Second task

The entries must be consecutively numbered, starting with 1. The number of each entry must be followed by a period.
Do not include any headers before your ranked list or follow your list with any other output."""

    print(f'\n****TASK PRIORITIZATION AGENT PROMPT****\n{prompt}\n')
    response = openai_call(prompt, max_tokens=2000)
    print(f'\n****TASK PRIORITIZATION AGENT RESPONSE****\n{response}\n')
    if not response:
        print('Received empty response from priotritization agent. Keeping task list unchanged.')
        return
    new_tasks = response.split("\n") if "\n" in response else [response]
    new_tasks_list = []
    for task_string in new_tasks:
        task_parts = task_string.strip().split(".", 1)
        if len(task_parts) == 2:
            task_id = ''.join(s for s in task_parts[0] if s.isnumeric())
            task_name = re.sub(r'[^\w\s_]+', '', task_parts[1]).strip()
            if task_name.strip():
                new_tasks_list.append({"task_id": task_id, "task_name": task_name})

    return new_tasks_list

3. 执行任务agent

这两段段代码执行五个基于目标的优先级比较高的任务。

这段代码是从结果存储中,根据查询内容获取top_results_nums个任务。

python 复制代码
# Get the top n completed tasks for the objective
def context_agent(query: str, top_results_num: int):
    """
    Retrieves context for a given query from an index of tasks.

    Args:
        query (str): The query or objective for retrieving context.
        top_results_num (int): The number of top results to retrieve.

    Returns:
        list: A list of tasks as context for the given query, sorted by relevance.

    """
    results = results_storage.query(query=query, top_results_num=top_results_num)
    # print("****RESULTS****")
    # print(results)
    return results

这段代码是通过OpenAI API执行agent,整个prompt的结构同样是

  1. 先说明目标
  2. 拼接已完成的上下文,详细内容
  3. 再表明你的任务
python 复制代码
# Execute a task based on the objective and five previous tasks
def execution_agent(objective: str, task: str) -> str:
    """
    Executes a task based on the given objective and previous context.

    Args:
        objective (str): The objective or goal for the AI to perform the task.
        task (str): The task to be executed by the AI.

    Returns:
        str: The response generated by the AI for the given task.

    """

    context = context_agent(query=objective, top_results_num=5)
    # print("\n****RELEVANT CONTEXT****\n")
    # print(context)
    # print('')
    prompt = f'Perform one task based on the following objective: {objective}.\n'
    if context:
        prompt += 'Take into account these previously completed tasks:' + '\n'.join(context)
    prompt += f'\nYour task: {task}\nResponse:'
    return openai_call(prompt, max_tokens=2000)

这两段代码不知道为什么带上注释了,可能是作者买了coplit了吧😂

4. 任务主体

下面就是整体代码的最终部分了,主程序部分

主程序是一个大的死循环,主要分为三步

  • 获取task_storage中第一个未完成的任务,执行execution_agent,传入目标和未完成的任务,获取result
  • 重新包装resultresult_id,并将结果存放到result_storage中,而这个result_storage正式之前配置的向量数据库
  • 创建新任务,并重新排列任务优先级,这里只有设置了cooperative mode才会执行这个,这里我们也可以理解,当有多个线程同时参与时,需要进行优先级排序,防止重复执行任务

整体项目来看的话,就是一个执行任务-分解任务-执行任务的循环,当列表为空时,任务执行完成。

python 复制代码
# Add the initial task if starting new objective
if not JOIN_EXISTING_OBJECTIVE:
    initial_task = {
        "task_id": tasks_storage.next_task_id(),
        "task_name": INITIAL_TASK
    }
    tasks_storage.append(initial_task)


def main():
    loop = True
    while loop:
        # As long as there are tasks in the storage...
        if not tasks_storage.is_empty():
            # Print the task list
            print("\033[95m\033[1m" + "\n*****TASK LIST*****\n" + "\033[0m\033[0m")
            for t in tasks_storage.get_task_names():
                print(" • " + str(t))

            # Step 1: Pull the first incomplete task
            task = tasks_storage.popleft()
            print("\033[92m\033[1m" + "\n*****NEXT TASK*****\n" + "\033[0m\033[0m")
            print(str(task["task_name"]))

            # Send to execution function to complete the task based on the context
            result = execution_agent(OBJECTIVE, str(task["task_name"]))
            print("\033[93m\033[1m" + "\n*****TASK RESULT*****\n" + "\033[0m\033[0m")
            print(result)

            # Step 2: Enrich result and store in the results storage
            # This is where you should enrich the result if needed
            enriched_result = {
                "data": result
            }
            # extract the actual result from the dictionary
            # since we don't do enrichment currently
            # vector = enriched_result["data"]

            result_id = f"result_{task['task_id']}"

            results_storage.add(task, result, result_id)

            # Step 3: Create new tasks and re-prioritize task list
            # only the main instance in cooperative mode does that
            new_tasks = task_creation_agent(
                OBJECTIVE,
                enriched_result,
                task["task_name"],
                tasks_storage.get_task_names(),
            )

            print('Adding new tasks to task_storage')
            for new_task in new_tasks:
                new_task.update({"task_id": tasks_storage.next_task_id()})
                print(str(new_task))
                tasks_storage.append(new_task)

            if not JOIN_EXISTING_OBJECTIVE:
                prioritized_tasks = prioritization_agent()
                if prioritized_tasks:
                    tasks_storage.replace(prioritized_tasks)

            # Sleep a bit before checking the task list again
            time.sleep(5)
        else:
            print('Done.')
            loop = False


if __name__ == "__main__":
    main()

这就是整体的项目代码,下一篇,我们整体来看看AGI的原理,做个总结。

相关推荐
denghai邓海13 分钟前
红黑树删除之向上调整
python·b+树
千天夜33 分钟前
激活函数解析:神经网络背后的“驱动力”
人工智能·深度学习·神经网络
tyler_download34 分钟前
手撸 chatgpt 大模型:简述 LLM 的架构,算法和训练流程
算法·chatgpt
大数据面试宝典34 分钟前
用AI来写SQL:让ChatGPT成为你的数据库助手
数据库·人工智能·chatgpt
封步宇AIGC39 分钟前
量化交易系统开发-实时行情自动化交易-3.4.1.2.A股交易数据
人工智能·python·机器学习·数据挖掘
何曾参静谧40 分钟前
「Py」Python基础篇 之 Python都可以做哪些自动化?
开发语言·python·自动化
m0_5236742141 分钟前
技术前沿:从强化学习到Prompt Engineering,业务流程管理的创新之路
人工智能·深度学习·目标检测·机器学习·语言模型·自然语言处理·数据挖掘
Prejudices44 分钟前
C++如何调用Python脚本
开发语言·c++·python
HappyAcmen1 小时前
IDEA部署AI代写插件
java·人工智能·intellij-idea
我狠狠地刷刷刷刷刷1 小时前
中文分词模拟器
开发语言·python·算法