手机销量分析案例

项目背景

  • 某电商商城随着业务量的发展,积累了大量的用户手机销售订单数据。决策层希望能够通过对这些数据的分析了解更多的用户信息及用户的分布,从而可以指导下一年的市场营销方案以及更加精准的定位市场,进行广告投放。

数据说明

  • 数据时间从 2017.01.01至2019.03.31 共41800 条,数据存储在 excel 文件 中(Phone.xlsx)。

import pandas as pd

data = pd.read_excel('./Phone.xlsx')

data.head()

data.shape

(41800, 20)

  • 查看缺失数据的个数和占比

#查看缺失数据

for col in data.columns:

null_count = data[col].isnull().sum()

if null_count > 0:

p = str(null_count / data[col].size * 100)+'%'

print(col+':'+p)

年:100.0%

月:100.0%

年龄段:100.0%

  • 缺失值处理

data['年'] = data['订单日期'].dt.year

data['月'] = data['订单日期'].dt.month

#数据分箱:

#[0-16,17-26,27-36,37-49]

data['年龄段'] = pd.cut(data['年龄'],bins=[0,16,26,36,49])

  • 查看消费者对不同手机品牌的青睐程度

#查看不同品牌手机的累计销量和累计销售额,且对累计销量进行降序

data.groupby(by='品牌')[['销售额','数量']].sum().sort_values('数量',ascending=False)

  • 查看不同品牌的不同型号数量

p_count_list = [] #品牌名称和品牌型号的数量

for p in data['品牌'].unique():

#可以将p表示品牌的行数据

p_df = data.loc[data['品牌'] == p]

p_count = p_df['型号'].nunique() #品牌对应不同型号的数量

p_count_list.append([p,p_count])

pd.DataFrame(p_count_list,columns=['品牌','型号数量'])

#分组聚合

data.groupby(by='品牌')['型号'].nunique()

#分类汇总

data.pivot_table(index='品牌',values='型号',aggfunc='nunique')

  • 查看不同品牌中价格最高和最低的型号是什么

data.groupby(by=['品牌','型号'])['价格'].agg(['max','min'])

  • 查看不同月份的销量情况,哪些月份销量比较高

data.groupby(by='月')['数量'].sum().sort_values(ascending=False)

3 16582

1 16420

2 15561

12 11060

5 11026

7 10987

11 10960

8 10884

4 10863

10 10833

6 10733

9 10644

Name: 数量, dtype: int64

  • 不同年龄段的购买力

data.groupby(by='年龄段')['数量'].sum().sort_values(ascending=False)

年龄段

(16, 26] 74573

(26, 36] 68910

(0, 16] 1758

(36, 49] 1312

Name: 数量, dtype: int64

  • 查看不同省份不同城市的购买力情况

data.pivot_table(index=['省份名字','城市名字'],values='数量',aggfunc='sum').sort_values('数量',ascending=False)

  • 查看不同品牌的不同机身内存的订单量(只考虑订单量,不考虑一个订单中包含几个已购商品)

pd.crosstab(index=data['品牌'],columns=data['机身内存'])

内容来源于大数据分析课程。

相关推荐
北风toto30 分钟前
python学习DataFrame数据结构
数据结构·python·学习
亿牛云爬虫专家34 分钟前
微服务化采集平台:可扩展性与容错机制
python·微服务·架构·爬虫代理·扩展性·新浪财经·财经新闻
傻啦嘿哟1 小时前
Python爬虫动态IP代理报错全解析:从问题定位到实战优化
爬虫·python·tcp/ip
mit6.8241 小时前
[Meetily后端框架] Whisper转录服务器 | 后端服务管理脚本
c++·人工智能·后端·python
zhangfeng11331 小时前
python 数据分析 单细胞测序数据分析 相关的图表,常见于肿瘤免疫微环境、细胞亚群功能研究 ,各图表类型及逻辑关系如下
开发语言·python·数据分析·医学
UI罐头1 小时前
如何选择数据可视化工具?从设计效率到图表表现力全解读
信息可视化·数据分析·数据工具
柠檬豆腐脑1 小时前
Trae-Agent 内置工具深度解析
python·llm·agent
ydl11282 小时前
机器学习基础知识【 激活函数、损失函数、优化器、 正则化、调度器、指标函数】
python·机器学习
小周同学:2 小时前
uni-app获取手机当前连接的WIFI名称
智能手机·uni-app
chao_7893 小时前
CSS表达式——下篇【selenium】
css·python·selenium·算法