手机销量分析案例

项目背景

  • 某电商商城随着业务量的发展,积累了大量的用户手机销售订单数据。决策层希望能够通过对这些数据的分析了解更多的用户信息及用户的分布,从而可以指导下一年的市场营销方案以及更加精准的定位市场,进行广告投放。

数据说明

  • 数据时间从 2017.01.01至2019.03.31 共41800 条,数据存储在 excel 文件 中(Phone.xlsx)。

import pandas as pd

data = pd.read_excel('./Phone.xlsx')

data.head()

data.shape

(41800, 20)

  • 查看缺失数据的个数和占比

#查看缺失数据

for col in data.columns:

null_count = data[col].isnull().sum()

if null_count > 0:

p = str(null_count / data[col].size * 100)+'%'

print(col+':'+p)

年:100.0%

月:100.0%

年龄段:100.0%

  • 缺失值处理

data['年'] = data['订单日期'].dt.year

data['月'] = data['订单日期'].dt.month

#数据分箱:

#[0-16,17-26,27-36,37-49]

data['年龄段'] = pd.cut(data['年龄'],bins=[0,16,26,36,49])

  • 查看消费者对不同手机品牌的青睐程度

#查看不同品牌手机的累计销量和累计销售额,且对累计销量进行降序

data.groupby(by='品牌')[['销售额','数量']].sum().sort_values('数量',ascending=False)

  • 查看不同品牌的不同型号数量

p_count_list = [] #品牌名称和品牌型号的数量

for p in data['品牌'].unique():

#可以将p表示品牌的行数据

p_df = data.loc[data['品牌'] == p]

p_count = p_df['型号'].nunique() #品牌对应不同型号的数量

p_count_list.append([p,p_count])

pd.DataFrame(p_count_list,columns=['品牌','型号数量'])

#分组聚合

data.groupby(by='品牌')['型号'].nunique()

#分类汇总

data.pivot_table(index='品牌',values='型号',aggfunc='nunique')

  • 查看不同品牌中价格最高和最低的型号是什么

data.groupby(by=['品牌','型号'])['价格'].agg(['max','min'])

  • 查看不同月份的销量情况,哪些月份销量比较高

data.groupby(by='月')['数量'].sum().sort_values(ascending=False)

3 16582

1 16420

2 15561

12 11060

5 11026

7 10987

11 10960

8 10884

4 10863

10 10833

6 10733

9 10644

Name: 数量, dtype: int64

  • 不同年龄段的购买力

data.groupby(by='年龄段')['数量'].sum().sort_values(ascending=False)

年龄段

(16, 26] 74573

(26, 36] 68910

(0, 16] 1758

(36, 49] 1312

Name: 数量, dtype: int64

  • 查看不同省份不同城市的购买力情况

data.pivot_table(index=['省份名字','城市名字'],values='数量',aggfunc='sum').sort_values('数量',ascending=False)

  • 查看不同品牌的不同机身内存的订单量(只考虑订单量,不考虑一个订单中包含几个已购商品)

pd.crosstab(index=data['品牌'],columns=data['机身内存'])

内容来源于大数据分析课程。

相关推荐
读研的武16 分钟前
DashGo零基础入门 纯Python的管理系统搭建
开发语言·python
Digitally28 分钟前
如何用5种实用方法将电脑上的音乐传输到安卓手机
android·智能手机·电脑
Andy35 分钟前
Python基础语法4
开发语言·python
mm-q29152227291 小时前
Python+Requests零基础系统掌握接口自动化测试
开发语言·python
wanhengidc1 小时前
云手机的基本原理
运维·服务器·游戏·智能手机·云计算
AIminminHu1 小时前
系列文章<八>(从LED显示屏的Gamma过曝问题问题到手机影像):从LED冬奥会、奥运会及春晚等大屏,到手机小屏,快来挖一挖里面都有什么
智能手机·gamma校正·gamma·gamma过曝
电院工程师2 小时前
SIMON64/128算法Verilog流水线实现(附Python实现)
python·嵌入式硬件·算法·密码学
Python图像识别4 小时前
75_基于深度学习的咖啡叶片病害检测系统(yolo11、yolov8、yolov5+UI界面+Python项目源码+模型+标注好的数据集)
python·深度学习·yolo
闲人编程4 小时前
Python游戏开发入门:Pygame实战
开发语言·python·游戏·pygame·毕设·codecapsule