手机销量分析案例

项目背景

  • 某电商商城随着业务量的发展,积累了大量的用户手机销售订单数据。决策层希望能够通过对这些数据的分析了解更多的用户信息及用户的分布,从而可以指导下一年的市场营销方案以及更加精准的定位市场,进行广告投放。

数据说明

  • 数据时间从 2017.01.01至2019.03.31 共41800 条,数据存储在 excel 文件 中(Phone.xlsx)。

import pandas as pd

data = pd.read_excel('./Phone.xlsx')

data.head()

data.shape

(41800, 20)

  • 查看缺失数据的个数和占比

#查看缺失数据

for col in data.columns:

null_count = data[col].isnull().sum()

if null_count > 0:

p = str(null_count / data[col].size * 100)+'%'

print(col+':'+p)

年:100.0%

月:100.0%

年龄段:100.0%

  • 缺失值处理

data['年'] = data['订单日期'].dt.year

data['月'] = data['订单日期'].dt.month

#数据分箱:

#[0-16,17-26,27-36,37-49]

data['年龄段'] = pd.cut(data['年龄'],bins=[0,16,26,36,49])

  • 查看消费者对不同手机品牌的青睐程度

#查看不同品牌手机的累计销量和累计销售额,且对累计销量进行降序

data.groupby(by='品牌')[['销售额','数量']].sum().sort_values('数量',ascending=False)

  • 查看不同品牌的不同型号数量

p_count_list = [] #品牌名称和品牌型号的数量

for p in data['品牌'].unique():

#可以将p表示品牌的行数据

p_df = data.loc[data['品牌'] == p]

p_count = p_df['型号'].nunique() #品牌对应不同型号的数量

p_count_list.append([p,p_count])

pd.DataFrame(p_count_list,columns=['品牌','型号数量'])

#分组聚合

data.groupby(by='品牌')['型号'].nunique()

#分类汇总

data.pivot_table(index='品牌',values='型号',aggfunc='nunique')

  • 查看不同品牌中价格最高和最低的型号是什么

data.groupby(by=['品牌','型号'])['价格'].agg(['max','min'])

  • 查看不同月份的销量情况,哪些月份销量比较高

data.groupby(by='月')['数量'].sum().sort_values(ascending=False)

3 16582

1 16420

2 15561

12 11060

5 11026

7 10987

11 10960

8 10884

4 10863

10 10833

6 10733

9 10644

Name: 数量, dtype: int64

  • 不同年龄段的购买力

data.groupby(by='年龄段')['数量'].sum().sort_values(ascending=False)

年龄段

(16, 26] 74573

(26, 36] 68910

(0, 16] 1758

(36, 49] 1312

Name: 数量, dtype: int64

  • 查看不同省份不同城市的购买力情况

data.pivot_table(index=['省份名字','城市名字'],values='数量',aggfunc='sum').sort_values('数量',ascending=False)

  • 查看不同品牌的不同机身内存的订单量(只考虑订单量,不考虑一个订单中包含几个已购商品)

pd.crosstab(index=data['品牌'],columns=data['机身内存'])

内容来源于大数据分析课程。

相关推荐
知乎的哥廷根数学学派34 分钟前
面向可信机械故障诊断的自适应置信度惩罚深度校准算法(Pytorch)
人工智能·pytorch·python·深度学习·算法·机器学习·矩阵
sensen_kiss35 分钟前
INT303 Big Data Analysis 大数据分析 Pt.12 推荐系统(Recommendation Systems)
大数据·数据挖掘·数据分析
且去填词44 分钟前
DeepSeek :基于 Schema 推理与自愈机制的智能 ETL
数据仓库·人工智能·python·语言模型·etl·schema·deepseek
wang_yb1 小时前
当条形图遇上极坐标:径向与圆形条形图的视觉革命
数据分析·databook
人工干智能1 小时前
OpenAI Assistants API 中 client.beta.threads.messages.create方法,兼谈一星*和两星**解包
python·llm
databook1 小时前
当条形图遇上极坐标:径向与圆形条形图的视觉革命
python·数据分析·数据可视化
阿部多瑞 ABU2 小时前
`chenmo` —— 可编程元叙事引擎 V2.3+
linux·人工智能·python·ai写作
acanab2 小时前
VScode python插件
ide·vscode·python
极海拾贝2 小时前
GeoScene解决方案中心正式上线!
大数据·人工智能·深度学习·arcgis·信息可视化·语言模型·解决方案
知乎的哥廷根数学学派2 小时前
基于生成对抗U-Net混合架构的隧道衬砌缺陷地质雷达数据智能反演与成像方法(以模拟信号为例,Pytorch)
开发语言·人工智能·pytorch·python·深度学习·机器学习