手机销量分析案例

项目背景

  • 某电商商城随着业务量的发展,积累了大量的用户手机销售订单数据。决策层希望能够通过对这些数据的分析了解更多的用户信息及用户的分布,从而可以指导下一年的市场营销方案以及更加精准的定位市场,进行广告投放。

数据说明

  • 数据时间从 2017.01.01至2019.03.31 共41800 条,数据存储在 excel 文件 中(Phone.xlsx)。

import pandas as pd

data = pd.read_excel('./Phone.xlsx')

data.head()

data.shape

(41800, 20)

  • 查看缺失数据的个数和占比

#查看缺失数据

for col in data.columns:

null_count = data[col].isnull().sum()

if null_count > 0:

p = str(null_count / data[col].size * 100)+'%'

print(col+':'+p)

年:100.0%

月:100.0%

年龄段:100.0%

  • 缺失值处理

data['年'] = data['订单日期'].dt.year

data['月'] = data['订单日期'].dt.month

#数据分箱:

#[0-16,17-26,27-36,37-49]

data['年龄段'] = pd.cut(data['年龄'],bins=[0,16,26,36,49])

  • 查看消费者对不同手机品牌的青睐程度

#查看不同品牌手机的累计销量和累计销售额,且对累计销量进行降序

data.groupby(by='品牌')[['销售额','数量']].sum().sort_values('数量',ascending=False)

  • 查看不同品牌的不同型号数量

p_count_list = [] #品牌名称和品牌型号的数量

for p in data['品牌'].unique():

#可以将p表示品牌的行数据

p_df = data.loc[data['品牌'] == p]

p_count = p_df['型号'].nunique() #品牌对应不同型号的数量

p_count_list.append([p,p_count])

pd.DataFrame(p_count_list,columns=['品牌','型号数量'])

#分组聚合

data.groupby(by='品牌')['型号'].nunique()

#分类汇总

data.pivot_table(index='品牌',values='型号',aggfunc='nunique')

  • 查看不同品牌中价格最高和最低的型号是什么

data.groupby(by=['品牌','型号'])['价格'].agg(['max','min'])

  • 查看不同月份的销量情况,哪些月份销量比较高

data.groupby(by='月')['数量'].sum().sort_values(ascending=False)

3 16582

1 16420

2 15561

12 11060

5 11026

7 10987

11 10960

8 10884

4 10863

10 10833

6 10733

9 10644

Name: 数量, dtype: int64

  • 不同年龄段的购买力

data.groupby(by='年龄段')['数量'].sum().sort_values(ascending=False)

年龄段

(16, 26] 74573

(26, 36] 68910

(0, 16] 1758

(36, 49] 1312

Name: 数量, dtype: int64

  • 查看不同省份不同城市的购买力情况

data.pivot_table(index=['省份名字','城市名字'],values='数量',aggfunc='sum').sort_values('数量',ascending=False)

  • 查看不同品牌的不同机身内存的订单量(只考虑订单量,不考虑一个订单中包含几个已购商品)

pd.crosstab(index=data['品牌'],columns=data['机身内存'])

内容来源于大数据分析课程。

相关推荐
Ulyanov3 小时前
高保真单脉冲雷达导引头回波生成:Python建模与实践
开发语言·python·仿真·系统设计·单脉冲雷达
Li emily3 小时前
成功接入A股实时行情API获取实时市场数据
人工智能·python·金融·fastapi
沐墨染3 小时前
黑词分析与可疑对话挖掘组件的设计与实现
前端·elementui·数据挖掘·数据分析·vue·visual studio code
shehuiyuelaiyuehao4 小时前
22Java对象的比较
java·python·算法
张小凡vip4 小时前
Python异步编程实战:基于async/await的高并发实现
开发语言·python
wanhengidc4 小时前
私有云具体是指什么
服务器·网络·游戏·智能手机·云计算
zcbk01685 小时前
不踩坑!手把手教你在 Mac 上安装 Windows(含分区/虚拟机/驱动解决方案)
python
Dev7z5 小时前
滚压表面强化过程中变形诱导位错演化与梯度晶粒细化机理的数值模拟研究
人工智能·python·算法
吴秋霖5 小时前
apple游客下单逆向分析
python·算法·逆向分析
feasibility.6 小时前
yolo11-seg在ISIC2016医疗数据集训练预测流程(含AOP调loss函数方法)
人工智能·python·yolo·计算机视觉·健康医疗·实例分割·isic2016