【深度学习】图片预处理,分辨出模糊图片

ref:https://pyimagesearch.com/2015/09/07/blur-detection-with-opencv/

论文 ref:https://www.cse.cuhk.edu.hk/leojia/all_final_papers/blur_detect_cvpr08.pdf

遇到模糊的图片,还要处理一下,把它挑出来,要么修复,要么弃用。否则影响后续效果。




根据模糊值排序即可,写在文件名中,自动排序,然后对模糊的去掉即可

python 复制代码
import os.path

from imutils import paths
import argparse
import cv2
import shutil


def variance_of_laplacian(image):
    # compute the Laplacian of the image and then return the focus
    # measure, which is simply the variance of the Laplacian
    return cv2.Laplacian(image, cv2.CV_64F).var()


# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--images", default=r"D:\dataset\imgs_bk\imgs_bk",
                help="path to input directory of images")
ap.add_argument("-t", "--threshold", type=float, default=400.0,
                help="focus measures that fall below this value will be considered 'blurry'")
args = vars(ap.parse_args())
count_num = 0
for imagePath in paths.list_images(args["images"]):
    # load the image, convert it to grayscale, and compute the
    # focus measure of the image using the Variance of Laplacian
    # method
    image = cv2.imread(imagePath)
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    fm = variance_of_laplacian(gray)
    text = "Not Blurry"
    print("res:", imagePath, fm)
    # if the focus measure is less than the supplied threshold,
    # then the image should be considered "blurry"
    # for threshold in [100, 200, 300, 400, 500]:
    # if fm < threshold:
    # text = "Blurry"
    # # show the image
    # cv2.putText(image, "{}: {:.2f}".format(text, fm), (10, 30),
    #             cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 3)
    # # cv2.imshow("Image", image)
    _, file_name = os.path.split(imagePath)
    # dst_dir = r"D:\code\baidu-spider\blur_img"
    # os.makedirs(dst_dir, exist_ok=True)
    # dst_path = os.path.join(dst_dir, str(fm) + "-" + file_name)
    # cv2.imwrite(dst_path, image)
    dst_path_blank = os.path.join(r"D:\dataset\blank-blur-order", str(fm) + '-' + file_name)
    shutil.copy(imagePath, dst_path_blank)

count_num += 1

# key = cv2.waitKey(0)

本质是一个拉普拉斯变换!!

还挺好用的。

我感觉300,400的阈值,就会好很多了。

相关推荐
学历真的很重要8 分钟前
VsCode+Roo Code+Gemini 2.5 Pro+Gemini Balance AI辅助编程环境搭建(理论上通过多个Api Key负载均衡达到无限免费Gemini 2.5 Pro)
前端·人工智能·vscode·后端·语言模型·负载均衡·ai编程
普通网友9 分钟前
微服务注册中心与负载均衡实战精要,微软 2025 年 8 月更新:对固态硬盘与电脑功能有哪些潜在的影响。
人工智能·ai智能体·技术问答
苍何12 分钟前
一人手搓!AI 漫剧从0到1详细教程
人工智能
苍何21 分钟前
Gemini 3 刚刷屏,蚂蚁灵光又整活:一句话生成「闪游戏」
人工智能
苍何36 分钟前
越来越对 AI 做的 PPT 敬佩了!(附7大用法)
人工智能
苍何41 分钟前
超全Nano Banana Pro 提示词案例库来啦,小白也能轻松上手
人工智能
阿杰学AI2 小时前
AI核心知识39——大语言模型之World Model(简洁且通俗易懂版)
人工智能·ai·语言模型·aigc·世界模型·world model·sara
智慧地球(AI·Earth)2 小时前
Vibe Coding:你被取代了吗?
人工智能
大、男人2 小时前
DeepAgent学习
人工智能·学习
测试人社区—66793 小时前
提升测试覆盖率的有效手段剖析
人工智能·学习·flutter·ui·自动化·测试覆盖率