gpt-llm-trainer 出炉

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行! 订阅:https://rengongzhineng.io/

在这个信息爆炸的时代,想要DIY一个大语言模型(LLM)?有点头疼对吧。不过,别急,有个新工具出现了,名叫"claude-llm-trainer",由Matt Schumer亲自推出。这个工具就像是开启了作弊模式,允许你轻松创建定制的LLM。你只需要简单描述你希望模型完成的任务,剩下的就交给它了。它会利用Claude 3自动完成数据生成和模型训练的全部过程。最棒的部分?它是建立在一个开源框架上的,这意味着你可以享受到极大的灵活性。默认情况下,它会用LLaMA 2 7B模型,但如果你想尝试其他的模型,比如Mistral 7B,也是分分钟的事。

搞模型,真的是个技术活。得先搞数据集,清洗、格式化,然后选个模型,写训练代码,开搞。这还是最理想的情况呢。这个项目的初衷,就是探索一种新的实验性流程,目的是为了训练出一个高性能的任务特定模型。我们试图把所有的复杂性都给抹平,让从零到有、从想法到一个性能强劲的、训练完毕的模型变得尽可能简单。

只需输入你的任务描述,系统就能从零开始生成数据集,自动解析成正确的格式,并且为你精调LLaMA 2或GPT-3.5模型。

功能特色:

  • 数据集生成:利用Claude 3或GPT-4,gpt-llm-trainer能够根据提供的用例生成各种提示和响应。
  • 系统消息生成:gpt-llm-trainer还能为你的模型生成有效的系统提示。
  • 精调:数据集生成后,系统会自动将其分割为训练和验证集,为你精调模型,并使其准备好进行推理。

https://github.com/mshumer/gpt-llm-trainer

相关推荐
Moshow郑锴3 小时前
人工智能中的(特征选择)数据过滤方法和包裹方法
人工智能
TY-20253 小时前
【CV 目标检测】Fast RCNN模型①——与R-CNN区别
人工智能·目标检测·目标跟踪·cnn
CareyWYR4 小时前
苹果芯片Mac使用Docker部署MinerU api服务
人工智能
失散134 小时前
自然语言处理——02 文本预处理(下)
人工智能·自然语言处理
mit6.8245 小时前
[1Prompt1Story] 滑动窗口机制 | 图像生成管线 | VAE变分自编码器 | UNet去噪神经网络
人工智能·python
sinat_286945195 小时前
AI应用安全 - Prompt注入攻击
人工智能·安全·prompt
迈火6 小时前
ComfyUI-3D-Pack:3D创作的AI神器
人工智能·gpt·3d·ai·stable diffusion·aigc·midjourney
Moshow郑锴7 小时前
机器学习的特征工程(特征构造、特征选择、特征转换和特征提取)详解
人工智能·机器学习
CareyWYR8 小时前
每周AI论文速递(250811-250815)
人工智能
AI精钢8 小时前
H20芯片与中国的科技自立:一场隐形的博弈
人工智能·科技·stm32·单片机·物联网