YOLOv9 实现多目标跟踪

YOLOv9项目结合了YOLOv9的快速目标检测能力和DeepSORT的稳定跟踪能力,实现了对视频流中多个对象的实时、准确检测和跟踪。在具体应用中,该项目能够对视频中的行人、车辆或其他物体进行实时定位、识别和持续跟踪,即使在复杂环境、对象互相遮挡或出现短暂消失的情况下也能保持较好的跟踪性能。这样的技术在智能监控、自动驾驶、无人机导航、体育赛事分析等多个领域都有着广泛的应用潜力。

安装:

1.克隆此存储库:

复制代码
cd YOLOv9_DeepSORT

2.创造新环境 使用conda

复制代码
conda env create -f conda.yml conda activate yolov9-deepsort

使用点

复制代码
python3 -m virtualenv -p python3.11 yolov9-deepsort source yolov9-deepsort/bin/activate pip install -r requirements.txt

3.克隆 YOLOv9 存储库:

复制代码
pip install -r requirements.txt mv ../object_tracking.py ../yolov9

4.下载模型重量

复制代码
mkdir weights

用法

  1. 准备视频文件:

    • 将视频文件放置在所需位置。
    • 更新video视频文件路径中的标志或将其设置为0使用网络摄像头作为输入。
  2. 下载YOLOv9模型:

    • 确保对应的模型权重可用。
  3. 配置输出视频:

    • 更新output代码中的标志以指定输出视频文件的路径和文件名。
  4. 设置置信度阈值:

    • 调整conf代码中的标志以设置对象检测的置信度阈值。置信度低于此阈值的对象将被过滤掉。
  5. 如果您想检测并跟踪视频中的某些对象

    • 修改class_id代码中的flag,指定检测的类ID。该标志的默认值设置为 None。如果您只想检测和跟踪人员,请将其设置为 0,或参考 coco.names 文件了解其他选项。
  6. 如果您想在跟踪时模糊某些对象

    • 修改bulr_id代码中的flag,指定检测的类ID。该标志的默认值设置为 None。
  7. 运行代码:

    用法

  8. 准备视频文件:

    • 将视频文件放置在所需位置。
    • 更新video视频文件路径中的标志或将其设置为0使用网络摄像头作为输入。
  9. 下载YOLOv9模型:

    • 确保对应的模型权重可用。 (YOLOv9-S/YOLOv9-M/ YOLOv9-C / YOLOv9-E )
  10. 配置输出视频:

    • 更新output代码中的标志以指定输出视频文件的路径和文件名。
  11. 设置置信度阈值:

    • 调整conf代码中的标志以设置对象检测的置信度阈值。置信度低于此阈值的对象将被过滤掉。
  12. 如果您想检测并跟踪视频中的某些对象

    • 修改class_id代码中的flag,指定检测的类ID。该标志的默认值设置为 None。如果您只想检测和跟踪人员,请将其设置为 0,或参考 coco.names 文件了解其他选项。
  13. 如果您想在跟踪时模糊某些对象

    • 修改bulr_id代码中的flag,指定检测的类ID。该标志的默认值设置为 None。
  14. 运行代码:

    Run object tracking

    python object_tracking.py --video ./data/test.mp4 --output ./output/output.mp4

    Run object tracking on webcam (set video flag to 0)

    python object_tracking.py --video 0 --output ./output/webcam.mp4

    Run person tracking (set class_id flag to 0 for person)

    python object_tracking.py --video ./data/test.mp4 --output ./output/output.mp4 --class_id 0

相关推荐
泡芙与栀6 小时前
普通相机与深度相机的区别及双目结构光_飞行时间方案差异解析
数码相机·目标检测·计算机视觉·视觉检测
AI街潜水的八角6 小时前
基于Opencv的二维码识别与创建
人工智能·opencv·计算机视觉
helloworld也报错?6 小时前
目标检测系列之YOLOv11——v8模型的继续改进
人工智能·python·目标检测·目标跟踪
编码小哥7 小时前
OpenCV GrabCut前景提取技术详解
人工智能·opencv·计算机视觉
意趣新7 小时前
OpenCV 中摄像头视频采集 + 实时显示 + 视频保存
python·opencv·计算机视觉
王哈哈^_^7 小时前
【完整源码+数据集】道路交通事故数据集,yolo车祸检测数据集 7869 张,交通事故级别检测数据集,交通事故检测系统实战教程
人工智能·深度学习·算法·yolo·目标检测·计算机视觉·毕业设计
kylezhao20198 小时前
工业机器视觉基础认知
计算机视觉·c#·visionpro
王哈哈^_^9 小时前
【完整源码+数据集】道路拥塞数据集,yolo道路拥塞检测数据集 8921 张,交通拥堵识别数据集,路口拥塞识别系统实战教程
深度学习·算法·yolo·目标检测·计算机视觉·分类·毕业设计
dazzle10 小时前
计算机视觉处理(OpenCV基础教学(十三):图像水印添加技术详解)
人工智能·opencv·计算机视觉
乐迪信息13 小时前
乐迪信息:目标检测算法+AI摄像机:煤矿全场景识别方案
人工智能·物联网·算法·目标检测·目标跟踪·语音识别