【蓝桥杯】矩阵快速幂

一.快速幂概述

1.引例

1)题目描述:

求A^B的最后三位数表示的整数,A^B表示:A的B次方。

2)思路:

一般的思路是:求出A的B次幂,再取结果的最后三位数。但是由于计算机能够表示的数字的范围是有限的,所以会产生"指数爆炸"的现象(即发生溢出现象)。

换一种思路来看本题:

取模运算的公式如下:

结论:

多个因子连续的乘积取模的结果等于每个因子取模后的乘积再取模的结果。

我们可以借助这个法则,只需要在循环乘积的每一步都提前进行"取模"运算,而不是等到最后直接对结果"取模",也能达到同样的效果。

3)代码如下:

cpp 复制代码
long long normalPower(long long a,long long b){
    long long result=1;
    for(int i=0;i<b;i++){
        result=(result*(a%1000))%1000;
    }
    return result%1000;
}

2.快速幂算法

1)思路:

快速幂算法能够帮我们算出指数非常大的幂。

传统算法时间复杂度高的原因是:指数很大,循环次数多。

核心思想:每一步都将指数分成两半,而相应的底数做平方运算。

2)代码:

cpp 复制代码
//获取最后三位数
long long fastPower(long long base,long long power){
    long long re=1;
    while(power>0){
        if(power%2){//指数为奇数
            power--;//指数-1,将其变为偶数
            re=re*base%1000;
        }
        power/=2;
        base=base*base%1000;
    }
    return re;
}

通过位运算进行优化:

cpp 复制代码
long long FastPower(long long base,long long power){
    long long re=1;
    while(power>0){
        if(power&1){
            re=re*base%1000;
        }
        power=power>>1;
        base=(base*base)%1000;
    }
    return re;
}

二.矩阵快速幂

矩阵乘法:

cpp 复制代码
for(i=1;i<=n;i++)
{
    for(j=1;j<=n;j++)
    {
        for(k=1;k<=n;k++)
        {
            c[i][j] += a[i][k] * b[k][j];
        }
    }
}

矩阵快速幂:

仿照大数的快速幂

cpp 复制代码
//矩阵快速幂
#include<iostream>
#include<cstring>
using namespace std;


int M,n;

struct node{
    int m[100][100];
}ans,res;//ans是结果,res为最初的方阵

struct node mul(struct node A,struct node B){
    struct node C;
    int i,j,k;
    
    for(i=0;i<n;i++)
        for(j=0;j<n;j++)
            C.m[i][j]=0;
    
    for(i=0;i<n;i++){
        for(j=0;j<n;j++){
            for(k=0;k<n;k++){
                C.m[i][j]+=A.m[i][k]*B.m[k][j];
            }
        }
    }
    return C;
}

void quickpower(){
    int i,j;
    //初始ans为单位矩阵
    for(i=0;i<n;i++)
        for(j=0;j<n;j++)
            if(i==j)
                ans.m[i][j]=1;
            else
                ans.m[i][j]=0;
    while(M>0){
        if(M&1){
            ans=mul(ans,res);
        }
        res=mul(res,res);
        M=M>>1;
    }
}
int main(){
    cin>>n;
    cin>>M;
    for(int i=0;i<n;i++)
        for(int j=0;j<n;j++)
            cin>>res.m[i][j];
    quickpower();
    for(int i=0;i<n;i++){
        for(int j=0;j<n;j++)
            cout<<ans.m[i][j]<<' ';
        cout<<endl;
    }
    return 0;
}

三.实战演练

1.题目描述:

2.问题分析:

转换为矩阵相乘的形式。

3.代码实现:

cpp 复制代码
//斐波那契数列
#include<iostream>

using namespace std;

const int N=1e4;
const long long mod=1e9+7;
int T;
long long a[N];

struct node{
    long long m[2][2];
}ans,res;

//矩阵乘法
struct node mul(struct node a,struct node b){
    struct node c;
    c.m[0][0]=(a.m[0][0]*b.m[0][0]+a.m[0][1]*b.m[1][0])%mod;
    c.m[0][1]=(a.m[0][0]*b.m[0][1]+a.m[0][1]*b.m[1][1])%mod;
    c.m[1][0]=(a.m[1][0]*b.m[0][0]+a.m[1][1]*b.m[1][0])%mod;
    c.m[1][1]=(a.m[1][0]*b.m[0][1]+a.m[1][1]*b.m[1][1])%mod;
    return c;
}

//矩阵快速幂
struct node matrixPower(struct node base,long long exp){
    struct node res={1,0,0,1};
    while(exp>0){
        if(exp&1){
            res=mul(res, base);
        }
        exp=exp>>1;
        base=mul(base, base);
    }
    return res;
}

//求斐波那契数列第n项
long long f(long long n){
    struct node base={1,1,1,0};
    struct node res=matrixPower(base, n-1);
    return res.m[0][0];
}
int main(){
    ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
    cin>>T;
    for(int i=0;i<T;i++){
        cin>>a[i];
    }
    for(int i=0;i<T;i++){
        cout<<f(a[i])<<'\n';
    }
    return 0;
}
相关推荐
源代码•宸7 小时前
分布式缓存-GO(分布式算法之一致性哈希、缓存对外服务化)
开发语言·经验分享·分布式·后端·算法·缓存·golang
yongui478348 小时前
MATLAB的指纹识别系统实现
算法
高山上有一只小老虎8 小时前
翻之矩阵中的行
java·算法
jghhh018 小时前
RINEX文件进行卫星导航解算
算法
爱思德学术9 小时前
中国计算机学会(CCF)推荐学术会议-A(计算机科学理论):LICS 2026
算法·计算机理论·计算机逻辑
CVHub9 小时前
多模态图文训推一体化平台 X-AnyLabeling 3.0 版本正式发布!首次支持远程模型推理服务,并新增 Qwen3-VL 等多款主流模型及诸多功能特性,等
算法
hoiii1879 小时前
MATLAB实现Canny边缘检测算法
算法·计算机视觉·matlab
qq_430855889 小时前
线代第二章矩阵第四课:方阵的幂
算法·机器学习·矩阵
roman_日积跬步-终至千里9 小时前
【计算机设计与算法-习题2】动态规划应用:矩阵乘法与钢条切割问题
算法·矩阵·动态规划
kupeThinkPoem9 小时前
计算机算法导论第三版算法视频讲解
数据结构·算法