【蓝桥杯】矩阵快速幂

一.快速幂概述

1.引例

1)题目描述:

求A^B的最后三位数表示的整数,A^B表示:A的B次方。

2)思路:

一般的思路是:求出A的B次幂,再取结果的最后三位数。但是由于计算机能够表示的数字的范围是有限的,所以会产生"指数爆炸"的现象(即发生溢出现象)。

换一种思路来看本题:

取模运算的公式如下:

结论:

多个因子连续的乘积取模的结果等于每个因子取模后的乘积再取模的结果。

我们可以借助这个法则,只需要在循环乘积的每一步都提前进行"取模"运算,而不是等到最后直接对结果"取模",也能达到同样的效果。

3)代码如下:

cpp 复制代码
long long normalPower(long long a,long long b){
    long long result=1;
    for(int i=0;i<b;i++){
        result=(result*(a%1000))%1000;
    }
    return result%1000;
}

2.快速幂算法

1)思路:

快速幂算法能够帮我们算出指数非常大的幂。

传统算法时间复杂度高的原因是:指数很大,循环次数多。

核心思想:每一步都将指数分成两半,而相应的底数做平方运算。

2)代码:

cpp 复制代码
//获取最后三位数
long long fastPower(long long base,long long power){
    long long re=1;
    while(power>0){
        if(power%2){//指数为奇数
            power--;//指数-1,将其变为偶数
            re=re*base%1000;
        }
        power/=2;
        base=base*base%1000;
    }
    return re;
}

通过位运算进行优化:

cpp 复制代码
long long FastPower(long long base,long long power){
    long long re=1;
    while(power>0){
        if(power&1){
            re=re*base%1000;
        }
        power=power>>1;
        base=(base*base)%1000;
    }
    return re;
}

二.矩阵快速幂

矩阵乘法:

cpp 复制代码
for(i=1;i<=n;i++)
{
    for(j=1;j<=n;j++)
    {
        for(k=1;k<=n;k++)
        {
            c[i][j] += a[i][k] * b[k][j];
        }
    }
}

矩阵快速幂:

仿照大数的快速幂

cpp 复制代码
//矩阵快速幂
#include<iostream>
#include<cstring>
using namespace std;


int M,n;

struct node{
    int m[100][100];
}ans,res;//ans是结果,res为最初的方阵

struct node mul(struct node A,struct node B){
    struct node C;
    int i,j,k;
    
    for(i=0;i<n;i++)
        for(j=0;j<n;j++)
            C.m[i][j]=0;
    
    for(i=0;i<n;i++){
        for(j=0;j<n;j++){
            for(k=0;k<n;k++){
                C.m[i][j]+=A.m[i][k]*B.m[k][j];
            }
        }
    }
    return C;
}

void quickpower(){
    int i,j;
    //初始ans为单位矩阵
    for(i=0;i<n;i++)
        for(j=0;j<n;j++)
            if(i==j)
                ans.m[i][j]=1;
            else
                ans.m[i][j]=0;
    while(M>0){
        if(M&1){
            ans=mul(ans,res);
        }
        res=mul(res,res);
        M=M>>1;
    }
}
int main(){
    cin>>n;
    cin>>M;
    for(int i=0;i<n;i++)
        for(int j=0;j<n;j++)
            cin>>res.m[i][j];
    quickpower();
    for(int i=0;i<n;i++){
        for(int j=0;j<n;j++)
            cout<<ans.m[i][j]<<' ';
        cout<<endl;
    }
    return 0;
}

三.实战演练

1.题目描述:

2.问题分析:

转换为矩阵相乘的形式。

3.代码实现:

cpp 复制代码
//斐波那契数列
#include<iostream>

using namespace std;

const int N=1e4;
const long long mod=1e9+7;
int T;
long long a[N];

struct node{
    long long m[2][2];
}ans,res;

//矩阵乘法
struct node mul(struct node a,struct node b){
    struct node c;
    c.m[0][0]=(a.m[0][0]*b.m[0][0]+a.m[0][1]*b.m[1][0])%mod;
    c.m[0][1]=(a.m[0][0]*b.m[0][1]+a.m[0][1]*b.m[1][1])%mod;
    c.m[1][0]=(a.m[1][0]*b.m[0][0]+a.m[1][1]*b.m[1][0])%mod;
    c.m[1][1]=(a.m[1][0]*b.m[0][1]+a.m[1][1]*b.m[1][1])%mod;
    return c;
}

//矩阵快速幂
struct node matrixPower(struct node base,long long exp){
    struct node res={1,0,0,1};
    while(exp>0){
        if(exp&1){
            res=mul(res, base);
        }
        exp=exp>>1;
        base=mul(base, base);
    }
    return res;
}

//求斐波那契数列第n项
long long f(long long n){
    struct node base={1,1,1,0};
    struct node res=matrixPower(base, n-1);
    return res.m[0][0];
}
int main(){
    ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
    cin>>T;
    for(int i=0;i<T;i++){
        cin>>a[i];
    }
    for(int i=0;i<T;i++){
        cout<<f(a[i])<<'\n';
    }
    return 0;
}
相关推荐
curemoon9 分钟前
理解都远正态分布中指数项的精度矩阵(协方差逆矩阵)
人工智能·算法·矩阵
柃歌17 分钟前
【UCB CS 61B SP24】Lecture 7 - Lists 4: Arrays and Lists学习笔记
java·数据结构·笔记·学习·算法
柃歌27 分钟前
【UCB CS 61B SP24】Lecture 4 - Lists 2: SLLists学习笔记
java·数据结构·笔记·学习·算法
SKYDROID云卓小助手2 小时前
无人设备遥控器之如何分享数传篇
网络·人工智能·算法·计算机视觉·电脑
Lqingyyyy2 小时前
P2865 [USACO06NOV] Roadblocks G 与最短路的路径可重复的严格次短路
开发语言·c++·算法
WHATEVER_LEO2 小时前
【每日论文】Text-guided Sparse Voxel Pruning for Efficient 3D Visual Grounding
人工智能·深度学习·神经网络·算法·机器学习·自然语言处理
Vacant Seat3 小时前
贪心算法-买卖股票的最佳时机
java·数据结构·算法·贪心算法
郑州吴彦祖7723 小时前
数据结构——二叉树经典习题讲解
java·数据结构·算法·leetcode
lyx1426063 小时前
leetcode 8. 字符串转换整数 (atoi)
算法
qy发大财3 小时前
跳跃游戏II(力扣45)
算法·leetcode