Blind Super-Resolution Kernel Estimation using an Internal-GAN

这篇论文的思路是真得好。该方法本质上是通过最大化图像跨尺度自相似性估计模糊核。

KernelGAN仅利用图像本身,不使用任何外部样本,属于自监督学习。

KernelGAN通过训练低分辨率图像的降采样版本与低分辨率图像之间的对抗损失,使得生成器拟合高分辨率图像的降质过程,生成网络是模糊核。

如何通过损失找出跨尺度相似块,是个问题,至今没有读懂。

相关推荐
kisshuan123964 分钟前
YOLO11-RevCol_声呐图像多目标检测_人员水雷飞机船舶识别与定位
人工智能·目标检测·计算机视觉
lkbhua莱克瓦2412 分钟前
人工智能(AI)形象介绍
人工智能·ai
shangjian00713 分钟前
AI大模型-核心概念-深度学习
人工智能·深度学习
十铭忘14 分钟前
windows系统python开源项目环境配置1
人工智能·python
PeterClerk17 分钟前
RAG 评估入门:Recall@k、MRR、nDCG、Faithfulness
人工智能·深度学习·机器学习·语言模型·自然语言处理
Generalzy31 分钟前
langchain deepagent框架
人工智能·python·langchain
人工智能培训37 分钟前
10分钟了解向量数据库(4)
人工智能·机器学习·数据挖掘·深度学习入门·深度学习证书·ai培训证书·ai工程师证书
无忧智库43 分钟前
从“数据孤岛”到“城市大脑”:深度拆解某智慧城市“十五五”数字底座建设蓝图
人工智能·智慧城市
Rui_Freely1 小时前
Vins-Fusion之 SFM准备篇(十二)
人工智能·算法·计算机视觉
hugerat1 小时前
在AI的帮助下,用C++构造微型http server
linux·c++·人工智能·http·嵌入式·嵌入式linux