Blind Super-Resolution Kernel Estimation using an Internal-GAN

这篇论文的思路是真得好。该方法本质上是通过最大化图像跨尺度自相似性估计模糊核。

KernelGAN仅利用图像本身,不使用任何外部样本,属于自监督学习。

KernelGAN通过训练低分辨率图像的降采样版本与低分辨率图像之间的对抗损失,使得生成器拟合高分辨率图像的降质过程,生成网络是模糊核。

如何通过损失找出跨尺度相似块,是个问题,至今没有读懂。

相关推荐
星爷AG I4 分钟前
11-2 距离知觉(AGI基础理论)
人工智能·agi
算法狗26 分钟前
大模型面试题:在混合精度训练中如何选择合适的精度
人工智能·深度学习·机器学习·语言模型
晚霞的不甘8 分钟前
Flutter for OpenHarmony实现 RSA 加密:从数学原理到可视化演示
人工智能·flutter·计算机视觉·开源·视觉检测
图学习小组11 分钟前
Degradation-Aware Feature Perturbation for All-in-One Image Restoration
人工智能·深度学习·计算机视觉
迎仔15 分钟前
05-AI与网络安全
人工智能·安全·web安全
Aric_Jones18 分钟前
后台文章发布页添加 AI 自动生成摘要功能
人工智能
9呀22 分钟前
【ros2】OccupancyGrid消息里的resolution
人工智能·机器人
DuHz24 分钟前
通过超宽带信号估计位置——论文精读
论文阅读·人工智能·机器学习·自动驾驶·汽车
静听松涛13325 分钟前
大语言模型长上下文技术突破:如何处理超长文本的注意力机制与架构图解
人工智能·语言模型·架构
我送炭你添花26 分钟前
电子世界的奇妙冒险:从一个电阻开始(系列目录)
人工智能·单片机·嵌入式硬件·fpga开发