Blind Super-Resolution Kernel Estimation using an Internal-GAN

这篇论文的思路是真得好。该方法本质上是通过最大化图像跨尺度自相似性估计模糊核。

KernelGAN仅利用图像本身,不使用任何外部样本,属于自监督学习。

KernelGAN通过训练低分辨率图像的降采样版本与低分辨率图像之间的对抗损失,使得生成器拟合高分辨率图像的降质过程,生成网络是模糊核。

如何通过损失找出跨尺度相似块,是个问题,至今没有读懂。

相关推荐
sanggou3 分钟前
Windsurf AI IDE 完全使用指南
ide·人工智能
2501_941870561 小时前
人工智能与未来的工作:自动化与人类协作的新时代
大数据·人工智能
Blurpath1 小时前
2025 年用ChatGPT+代理构建AI驱动的智能爬虫
人工智能·爬虫·chatgpt·ip代理·住宅ip·动态住宅代理·轮换ip
sensen_kiss1 小时前
INT301 Bio-computation 生物计算(神经网络)Pt.8 主成分分析(PCA)与无监督学习
神经网络·学习·线性代数·机器学习
极客BIM工作室1 小时前
大模型中的Scaling Law:AI的“增长密码“
人工智能
纪伊路上盛名在2 小时前
Alphafold实用指南—官网教程3
数据库·人工智能·机器学习·alphafold·计算生物学·结构生物学
茶杯6752 小时前
数字孪生厂商推荐:跨行业通用型平台与垂直领域专精企业对比指南
人工智能
道可云2 小时前
场景搭桥,产业赋能:新政策如何激活乡村振兴新动能
人工智能
诸葛务农2 小时前
人形机器人:热成像血管分布图及糖尿病足早期病变预警模型
人工智能·机器人