[机器学习]练习KNN算法-曼哈顿距离

曼哈顿距离(Manhattan distance)

曼哈顿距离是指在几何空间中两点之间的距离,其计算方法是通过将两点在各个坐标轴上的差值的绝对值相加得到。在二维空间中,曼哈顿距离可以表示为两点在横纵坐标上的差值的绝对值之和;在三维空间中,则是在三个坐标轴上的差值的绝对值之和。想象你在城市道路里,要从一个十字路口开车到另外一个十字路口,驾驶距离是两点间的直线距离吗?显然不是,除非你能穿越大楼。实际驾驶距离就是这个"曼哈顿距离"。而这也是曼哈顿距离名称的来源,曼哈顿距离也称为城市街区距离(City Block distance)。

距离公式:

python 复制代码
编写曼哈顿距离代码
##### 在此处编写或补全代码
def manhattan_distance(a,b):
    return abs(a-b)
计算
a = np.array((2,3))
b = np.array((10,5))
##### 在此处编写或补全代码
dist3 = np.sum(np.abs(a-b))
print(f"d3={dist3}\n")

执行结果:

相关推荐
Yeats_Liao7 分钟前
MindSpore开发之路(二十四):MindSpore Hub:快速复用预训练模型
人工智能·分布式·神经网络·机器学习·个人开发
千金裘换酒9 分钟前
LeetCode反转链表
算法·leetcode·链表
老周聊架构17 分钟前
基于YOLOv8-OBB旋转目标检测数据集与模型训练
人工智能·yolo·目标检测
AKAMAI28 分钟前
基准测试:Akamai云上的NVIDIA RTX Pro 6000 Blackwell
人工智能·云计算·测试
寂寞恋上夜34 分钟前
异步任务怎么设计:轮询/WebSocket/回调(附PRD写法)
网络·人工智能·websocket·网络协议·markdown转xmind·deepseek思维导图
Deepoch34 分钟前
赋能未来:Deepoc具身模型开发板如何成为机器人创新的“基石”
人工智能·机器人·开发板·具身模型·deepoc
格林威1 小时前
传送带上运动模糊图像复原:提升动态成像清晰度的 6 个核心方案,附 OpenCV+Halcon 实战代码!
人工智能·opencv·机器学习·计算机视觉·ai·halcon·工业相机
byzh_rc1 小时前
[认知计算] 专栏总结
线性代数·算法·matlab·信号处理
且去填词1 小时前
DeepSeek API 深度解析:从流式输出、Function Calling 到构建拥有“手脚”的 AI 应用
人工智能·python·语言模型·llm·agent·deepseek