[机器学习]练习KNN算法-曼哈顿距离

曼哈顿距离(Manhattan distance)

曼哈顿距离是指在几何空间中两点之间的距离,其计算方法是通过将两点在各个坐标轴上的差值的绝对值相加得到。在二维空间中,曼哈顿距离可以表示为两点在横纵坐标上的差值的绝对值之和;在三维空间中,则是在三个坐标轴上的差值的绝对值之和。想象你在城市道路里,要从一个十字路口开车到另外一个十字路口,驾驶距离是两点间的直线距离吗?显然不是,除非你能穿越大楼。实际驾驶距离就是这个"曼哈顿距离"。而这也是曼哈顿距离名称的来源,曼哈顿距离也称为城市街区距离(City Block distance)。

距离公式:

python 复制代码
编写曼哈顿距离代码
##### 在此处编写或补全代码
def manhattan_distance(a,b):
    return abs(a-b)
计算
a = np.array((2,3))
b = np.array((10,5))
##### 在此处编写或补全代码
dist3 = np.sum(np.abs(a-b))
print(f"d3={dist3}\n")

执行结果:

相关推荐
tongxianchao1 小时前
UPDP: A Unified Progressive Depth Pruner for CNN and Vision Transformer
人工智能·cnn·transformer
塔能物联运维1 小时前
设备边缘计算任务调度卡顿 后来动态分配CPU/GPU资源
人工智能·边缘计算
过期的秋刀鱼!2 小时前
人工智能-深度学习-线性回归
人工智能·深度学习
木头左2 小时前
高级LSTM架构在量化交易中的特殊入参要求与实现
人工智能·rnn·lstm
leo__5202 小时前
基于两步成像算法的聚束模式SAR MATLAB实现
开发语言·算法·matlab
IE062 小时前
深度学习系列84:使用kokoros生成tts语音
人工智能·深度学习
欧阳天羲2 小时前
#前端开发未来3年(2026-2028)核心趋势与AI应用实践
人工智能·前端框架
IE062 小时前
深度学习系列83:使用outetts
人工智能·深度学习
前端小白在前进2 小时前
力扣刷题:在排序数组中查找元素的第一个和最后一个位置
数据结构·算法·leetcode
水中加点糖2 小时前
源码运行RagFlow并实现AI搜索(文搜文档、文搜图、视频理解)与自定义智能体(一)
人工智能·二次开发·ai搜索·文档解析·ai知识库·ragflow·mineru