k-均值聚类算法 Primary

目录


k-均值聚类算法(英文:k-means clustering)

定义:

k-均值聚类算法的目的是:把n个点(可以是样本的一次观察或一个实例)划分到k个聚类中,使得每个点都属于离他最近的均值(此即聚类中心)对应的聚类,以之作为聚类的标准。

案例------区分好坏苹果(有Key)

python 复制代码
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
import numpy as np

# 生成随机样本数据
# 假设你采集数据是二维的,每个样本有两个特征  [光泽, 气味]
appleData = np.array([[44, 40], [60, 45], [59, 70], [65, 80], [50, 50],
                      [75, 65], [45, 52], [64, 75], [65, 70], [53, 45]])

# 将样本分成2类 : 好果、坏果
# 设置两个初始簇中心的位置,指定Key值
initial_centroids = np.array([[40, 20], [70, 80]])

# 创建KMeans对象,并指定初始簇中心位置
kmeans = KMeans(n_clusters=2, init=initial_centroids)
kmeans.fit(appleData)

# 获取每个样本的类别
labels = kmeans.labels_

# 提取聚类中心
centroids = kmeans.cluster_centers_

# 绘制散点图并着色
colors = ['g', 'r']
for i in range(len(appleData)):
    plt.scatter(appleData[i][0], appleData[i][1], color=colors[labels[i]])

# 绘制聚类中心
for c in centroids:
    plt.scatter(c[0], c[1], marker='x', s=150, linewidths=5, zorder=10)

# 添加标签和标题
plt.xlabel('Glossiness')
plt.ylabel('Smell')
plt.title('Apple glossiness and smell K-Means clustering results')

# 显示图形
plt.show()

show

案例------自动聚类(无Key)

python 复制代码
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
import numpy as np

# 生成随机样本数据
X = np.array([[60, 75], [59, 70], [65, 80], [80, 90], [75, 65],
              [62, 75], [58, 68], [52, 60], [90, 85], [85, 90],
              [70, 75], [65, 70], [55, 65], [75, 80], [80, 85],
              [65, 75], [60, 70], [55, 60], [95, 95], [90, 90]])

# 将样本分成3类
kmeans = KMeans(n_clusters=3)
kmeans.fit(X)

# 获取每个样本的类别
labels = kmeans.labels_

# 提取聚类中心
centroids = kmeans.cluster_centers_

# 绘制散点图并着色
colors = ['r', 'g', 'b']
for i in range(len(X)):
    plt.scatter(X[i][0], X[i][1], color=colors[labels[i]])

# 绘制聚类中心
for c in centroids:
    plt.scatter(c[0], c[1], marker='x', s=150, linewidths=5, zorder=10)

# 添加标签和标题
plt.xlabel('Glossiness')
plt.ylabel('Smell')
plt.title('Apple glossiness and smell K-Means clustering results')

# 显示图形
plt.show()

show

相关推荐
张琪杭1 小时前
机器学习-随机森林解析
人工智能·随机森林·机器学习
@心都2 小时前
机器学习数学基础:42.AMOS 结构方程模型(SEM)分析的系统流程
人工智能·算法·机器学习
幻风_huanfeng5 小时前
每天五分钟深度学习框架PyTorch:使用残差块快速搭建ResNet网络
人工智能·pytorch·深度学习·神经网络·机器学习·resnet
YoseZang9 小时前
【机器学习和深度学习】分类问题通用评价指标:精确率、召回率、准确率和混淆矩阵
深度学习·机器学习·分类算法
IT古董9 小时前
【漫话机器学习系列】128.预处理之训练集与测试集(Preprocessing Traning And Test Sets)
深度学习·机器学习·自然语言处理
极客BIM工作室11 小时前
机器学校的考试风波:误差分析、过拟合和欠拟合
笔记·机器学习
SomeB1oody11 小时前
【Python机器学习】1.6. 逻辑回归理论(基础):逻辑函数、逻辑回归的原理、分类任务基本框架、通过线性回归求解分类问题
人工智能·python·机器学习·分类·逻辑回归·线性回归
CoovallyAIHub11 小时前
QwQ-32B:小模型大智慧,开启AI普惠化与视觉智能新时代
深度学习·机器学习
Shockang13 小时前
假设检验与置信区间在机器学习中的应用
人工智能·数学·机器学习·概率统计