AutoTimes: Autoregressive Time Series Forecasters via Large Language Models

要解决的问题:

1.之前based LLM的方法可能会忽视时间序列和自然语言的一致性,导致LLM潜力的利用不足

提出:

1.将LLM重新用作自回归时间序列预测器,他能够处理灵活的序列长度

2.提出token-wise prompting, 利用相应的时间戳使我们的方法适用于多模式场景

our approach establishes similar tokenization of

time series by the next token prediction, adopts the same au-

toregressive generation for inference, and freezes the blocks

of LLMs to fully reutilize the inherent token transition.

我们的方法通过下一个令牌预测建立了时间序列的类似令牌化,采用相同的自回归生成进行推理,并冻结LLM的块以充分利用固有的令牌转换。

优点:

1.继承了LLM的零值预测和上下文学习能力

2.表现出显著的方法通用性,并且可以通过更大的LLM,额外的文本或时间序列作为指令来实现增强的性能

方法Method:

时间序列编码:

AutoTimes:利用LLM重新定义自回归时间序列预测

补充:线性层和MLP

python 复制代码
if configs.mlp_hidden_layers == 0:
            if not configs.use_multi_gpu or (configs.use_multi_gpu and configs.local_rank == 0):
                print("use linear as tokenizer and detokenizer")
            self.encoder = nn.Linear(self.token_len, self.hidden_dim_of_llama)
            self.decoder = nn.Linear(self.hidden_dim_of_llama, self.token_len)
        else:
            if not configs.use_multi_gpu or (configs.use_multi_gpu and configs.local_rank == 0):
                print("use mlp as tokenizer and detokenizer")
            self.encoder = MLP(self.token_len, self.hidden_dim_of_llama, 
                            configs.mlp_hidden_dim, configs.mlp_hidden_layers, 
                            configs.dropout, configs.mlp_activation)
            self.decoder = MLP(self.hidden_dim_of_llama, self.token_len,
                            configs.mlp_hidden_dim, configs.mlp_hidden_layers,
                            configs.dropout, configs.mlp_activation)

假设我们有一个简单的二维数据集,包含两个特征:X1 和 X2。我们想要使用线性变换和多层感知机来对这个数据集进行处理。

线性变换:

假设我们有一个线性变换模型,该模型由一个线性层组成,其形式为:

```

y = W * x + b

```

其中,W 是权重矩阵,b 是偏置向量,x 是输入特征向量,y 是输出特征向量。

在这个简单的例子中,我们的线性模型如下:

```

y = w1 * X1 + w2 * X2 + b

```

这个模型对应于一个二维平面上的一条直线,它可以捕捉到数据中的线性关系。例如,如果我们的数据集呈现出明显的线性关系,那么线性变换模型可以很好地拟合这个数据集。

多层感知机(MLP):

假设我们有一个包含一个隐藏层的多层感知机模型,该模型由多个全连接层和非线性激活函数组成。

```

h = activation(W1 * x + b1)

y = W2 * h + b2

```

其中,W1 和 W2 是权重矩阵,b1 和 b2 是偏置向量,activation 是非线性激活函数,x 是输入特征向量,h 是隐藏层输出特征向量,y 是最终输出特征向量。

在这个简单的例子中,我们的多层感知机模型如下:

```

h = tanh(w1 * X1 + w2 * X2 + b1)

y = w3 * h + b2

```

其中,tanh 是双曲正切激活函数。这个模型通过隐藏层中的非线性激活函数,可以学习到数据中更复杂的非线性关系。例如,如果我们的数据集不仅呈现出线性关系,还有一些非线性特征,那么多层感知机模型可以更好地拟合这个数据集。

总结:

  • 线性变换适用于简单的线性数据,可以捕捉到数据中的线性关系。

  • 多层感知机适用于处理更复杂的非线性数据,通过多个非线性激活函数可以学习到数据中更复杂的非线性特征。

相关推荐
南 阳15 分钟前
从微服务到AI服务:Nacos 3.0如何重构下一代动态治理体系?
人工智能·微服务·云原生·重构
fmingzh26 分钟前
NVIDIA高级辅助驾驶安全与技术读后感
人工智能·安全·自动驾驶
qsmyhsgcs1 小时前
Java程序员转人工智能入门学习路线图(2025版)
java·人工智能·学习·机器学习·算法工程师·人工智能入门·ai算法工程师
A林玖1 小时前
【机器学习】朴素贝叶斯
人工智能·算法·机器学习
六边形战士DONK1 小时前
神经网络基础[损失函数,bp算法,梯度下降算法 ]
人工智能·神经网络·算法
IT从业者张某某1 小时前
机器学习-08-时序数据分析预测
人工智能·机器学习·数据分析
袁煦丞1 小时前
AI视频生成神器Wan 2.1:cpolar内网穿透实验室第596个成功挑战
人工智能·程序员·远程工作
xMathematics2 小时前
深度学习与SLAM特征提取融合:技术突破与应用前景
人工智能·深度学习
墨顿2 小时前
Transformer数学推导——Q29 推导语音识别中流式注意力(Streaming Attention)的延迟约束优化
人工智能·深度学习·transformer·注意力机制·跨模态与多模态
xinxiyinhe2 小时前
2025年深度学习模型发展全景透视(基于前沿技术突破与开源生态演进的交叉分析)
人工智能·深度学习·开源