深度学习pytorch——数据增强(持续更新)

背景介绍

大量的数据是防止过拟合的关键,但是我们如何去获取大量的数据,是自己去拍摄、录制吗?显然这种方式有极高的成本。我们可以对同一张图片进行变换得到多张图片,比如原来只有10张图片,通过变换变成了20张图片,但是并不能无限的增长,也是有限制的,这种方法就叫做数据增强。数据增强的成本基本为0,虽然最后得到的图片效果也没有原图片好,但是有总比没有强,会在一定程度上增强我们的模型。
一张网球照片不同的变换

翻转(Flip)

翻转效果图

代码实现:

python 复制代码
train_loader = torch.utils.data.DataLoader(
    datasets.MNIST('../data', train=True, download=True,
                   transform=transforms.Compose([
                       transforms.RandomHorizontalFlip(),  #水平翻转
                       transforms.RandomVerticalFlip(),  #竖直翻转
                       transforms.ToTensor()
                   ])),
    batch_size=batch_size, shuffle=True)

旋转(Rotate)

旋转效果图

代码实现:

python 复制代码
train_loader = torch.utils.data.DataLoader(
    datasets.MNIST('../data', train=True, download=True,
                   transform=transforms.Compose([
                       transforms.RandomRotation(15),  #-15度-15度的角度随机旋转
                       transforms.RandomRotation([90, 180, 270]),  #随机旋转90度,180度,270度
                       transforms.ToTensor()
                   ])),
    batch_size=batch_size, shuffle=True)

缩放(Scale)

缩放效果图

代码实现:

python 复制代码
train_loader = torch.utils.data.DataLoader(
    datasets.MNIST('../data', train=True, download=True,
                   transform=transforms.Compose([
                       transforms.Resize([32, 32]), #scale 缩放
                       transforms.ToTensor()
                   ])),
    batch_size=batch_size, shuffle=True)

裁剪或部分式旋转(Crop Part)

裁剪或部分式旋转效果图

代码实现:

python 复制代码
train_loader = torch.utils.data.DataLoader(
    datasets.MNIST('../data', train=True, download=True,
                   transform=transforms.Compose([
                       transforms.RandomRotation(15),  #-15度-15度的角度随机旋转
                       transforms.RandomRotation([90, 180, 270]),  #随机旋转90度,180度,270度
                       transforms.RandomCrop([28, 28]), #随机裁剪
                       transforms.ToTensor()
                   ])),
    batch_size=batch_size, shuffle=True)

加噪声(Noise)

加噪声效果图

参考:课时75 数据增强_哔哩哔哩_bilibili

相关推荐
饕餮怪程序猿几秒前
Datawhale AI 夏令营:用户洞察挑战赛 Notebook(1)
人工智能
玩转AGI2 分钟前
Dify篇-基于ChatFlow搭建文章理解助手
人工智能·程序员·llm
Blue桃之夭夭3 分钟前
基于OpenCV的实时人脸检测系统实现指南 ——Python+Haar级联分类器从环境搭建到完整部署
人工智能·python·opencv
qyresearch_6 分钟前
全球机械工业设计服务市场:技术驱动下的创新与增长
大数据·人工智能
禺垣8 分钟前
Transformer模型原理概述
深度学习
LLM大模型10 分钟前
DeepSeek篇-Deepseek-R1+Dify打造本地RAG知识库
人工智能·llm·deepseek
北京地铁1号线10 分钟前
Zero-Shot(零样本学习),One-Shot(单样本学习),Few-Shot(少样本学习)概述
人工智能·算法·大模型
杀生丸学AI15 分钟前
【三维生成】FlashDreamer:基于扩散模型的单目图像到3D场景
人工智能·3d·大模型·aigc·蒸馏与迁移学习·扩散模型与生成模型
柠檬味拥抱15 分钟前
金属材料表面六种缺陷类型数据集 | 适用于YOLO等视觉检测模型(1800张图片已划分、已标注)
人工智能
Baihai_IDP29 分钟前
AI 系统架构的演进:LLM → RAG → AI Workflow → AI Agent
人工智能·llm·aigc