深度学习pytorch——数据增强(持续更新)

背景介绍

大量的数据是防止过拟合的关键,但是我们如何去获取大量的数据,是自己去拍摄、录制吗?显然这种方式有极高的成本。我们可以对同一张图片进行变换得到多张图片,比如原来只有10张图片,通过变换变成了20张图片,但是并不能无限的增长,也是有限制的,这种方法就叫做数据增强。数据增强的成本基本为0,虽然最后得到的图片效果也没有原图片好,但是有总比没有强,会在一定程度上增强我们的模型。
一张网球照片不同的变换

翻转(Flip)

翻转效果图

代码实现:

python 复制代码
train_loader = torch.utils.data.DataLoader(
    datasets.MNIST('../data', train=True, download=True,
                   transform=transforms.Compose([
                       transforms.RandomHorizontalFlip(),  #水平翻转
                       transforms.RandomVerticalFlip(),  #竖直翻转
                       transforms.ToTensor()
                   ])),
    batch_size=batch_size, shuffle=True)

旋转(Rotate)

旋转效果图

代码实现:

python 复制代码
train_loader = torch.utils.data.DataLoader(
    datasets.MNIST('../data', train=True, download=True,
                   transform=transforms.Compose([
                       transforms.RandomRotation(15),  #-15度-15度的角度随机旋转
                       transforms.RandomRotation([90, 180, 270]),  #随机旋转90度,180度,270度
                       transforms.ToTensor()
                   ])),
    batch_size=batch_size, shuffle=True)

缩放(Scale)

缩放效果图

代码实现:

python 复制代码
train_loader = torch.utils.data.DataLoader(
    datasets.MNIST('../data', train=True, download=True,
                   transform=transforms.Compose([
                       transforms.Resize([32, 32]), #scale 缩放
                       transforms.ToTensor()
                   ])),
    batch_size=batch_size, shuffle=True)

裁剪或部分式旋转(Crop Part)

裁剪或部分式旋转效果图

代码实现:

python 复制代码
train_loader = torch.utils.data.DataLoader(
    datasets.MNIST('../data', train=True, download=True,
                   transform=transforms.Compose([
                       transforms.RandomRotation(15),  #-15度-15度的角度随机旋转
                       transforms.RandomRotation([90, 180, 270]),  #随机旋转90度,180度,270度
                       transforms.RandomCrop([28, 28]), #随机裁剪
                       transforms.ToTensor()
                   ])),
    batch_size=batch_size, shuffle=True)

加噪声(Noise)

加噪声效果图

参考:课时75 数据增强_哔哩哔哩_bilibili

相关推荐
Hcoco_me几秒前
大模型面试题40:结合RoPE位置编码、优秀位置编码的核心特性
人工智能·深度学习·lstm·transformer·word2vec
CoovallyAIHub3 分钟前
为你的 2026 年计算机视觉应用选择合适的边缘 AI 硬件
深度学习·算法·计算机视觉
刘立军7 分钟前
程序员应该熟悉的概念(8)嵌入和语义检索
人工智能·算法
Mr.Lee jack8 分钟前
TileRT超低延迟的大语言模型推理系统
人工智能·pytorch·deepseek
kisshuan123969 分钟前
基于VFNet的轮胎标签检测与分类系统
人工智能·分类·数据挖掘
Nautiluss13 分钟前
一起调试XVF3800麦克风阵列(六)
人工智能·单片机·音频·语音识别·dsp开发·智能硬件
北京耐用通信14 分钟前
耐达讯自动化Profibus三路中继器:低成本搞定阀门定位器稳定组网的硬核方案
人工智能·物联网·自动化
敢敢のwings14 分钟前
VGGT-Long:极简主义驱动的公里级单目三维重建系统深度解析(Pytorch安装手册版)
人工智能·pytorch·python
技术狂人16815 分钟前
(七)大模型工程落地与部署 10 题!vLLM/QPS 优化 / 高可用,面试实战必备(工程篇)
人工智能·深度学习·面试·职场和发展·vllm
新芒16 分钟前
海尔智家加速全球体育营销
大数据·人工智能