深度学习pytorch——数据增强(持续更新)

背景介绍

大量的数据是防止过拟合的关键,但是我们如何去获取大量的数据,是自己去拍摄、录制吗?显然这种方式有极高的成本。我们可以对同一张图片进行变换得到多张图片,比如原来只有10张图片,通过变换变成了20张图片,但是并不能无限的增长,也是有限制的,这种方法就叫做数据增强。数据增强的成本基本为0,虽然最后得到的图片效果也没有原图片好,但是有总比没有强,会在一定程度上增强我们的模型。
一张网球照片不同的变换

翻转(Flip)

翻转效果图

代码实现:

python 复制代码
train_loader = torch.utils.data.DataLoader(
    datasets.MNIST('../data', train=True, download=True,
                   transform=transforms.Compose([
                       transforms.RandomHorizontalFlip(),  #水平翻转
                       transforms.RandomVerticalFlip(),  #竖直翻转
                       transforms.ToTensor()
                   ])),
    batch_size=batch_size, shuffle=True)

旋转(Rotate)

旋转效果图

代码实现:

python 复制代码
train_loader = torch.utils.data.DataLoader(
    datasets.MNIST('../data', train=True, download=True,
                   transform=transforms.Compose([
                       transforms.RandomRotation(15),  #-15度-15度的角度随机旋转
                       transforms.RandomRotation([90, 180, 270]),  #随机旋转90度,180度,270度
                       transforms.ToTensor()
                   ])),
    batch_size=batch_size, shuffle=True)

缩放(Scale)

缩放效果图

代码实现:

python 复制代码
train_loader = torch.utils.data.DataLoader(
    datasets.MNIST('../data', train=True, download=True,
                   transform=transforms.Compose([
                       transforms.Resize([32, 32]), #scale 缩放
                       transforms.ToTensor()
                   ])),
    batch_size=batch_size, shuffle=True)

裁剪或部分式旋转(Crop Part)

裁剪或部分式旋转效果图

代码实现:

python 复制代码
train_loader = torch.utils.data.DataLoader(
    datasets.MNIST('../data', train=True, download=True,
                   transform=transforms.Compose([
                       transforms.RandomRotation(15),  #-15度-15度的角度随机旋转
                       transforms.RandomRotation([90, 180, 270]),  #随机旋转90度,180度,270度
                       transforms.RandomCrop([28, 28]), #随机裁剪
                       transforms.ToTensor()
                   ])),
    batch_size=batch_size, shuffle=True)

加噪声(Noise)

加噪声效果图

参考:课时75 数据增强_哔哩哔哩_bilibili

相关推荐
机器人行业研究员1 分钟前
人形机器人走猫步?关节力传感器成就小鹏IRON?
人工智能·机器学习·机器人·人机交互·六维力传感器·关节力传感器
杭州泽沃电子科技有限公司4 分钟前
在线监测系统:农药精细化工的“安全锁”与“效率引擎”
运维·人工智能·科技·物联网·化工
snakecy17 分钟前
自然语言处理(NLP)算法原理与实现--Part 1
人工智能·算法·自然语言处理
富唯智能25 分钟前
移动+协作+视觉=?复合型机器人重新定义智能产线
人工智能·工业机器人·复合机器人
mit6.82429 分钟前
[AI tradingOS] trader_manager.go | API集中控制_handleStartTrader
人工智能·区块链
CoovallyAIHub30 分钟前
让Qwen-VL的检测能力像YOLO一样强,VLM-FO1如何打通大模型的视觉任督二脉
深度学习·算法·计算机视觉
说私域30 分钟前
开源链动2+1模式AI智能名片S2B2C商城小程序的价值及持续变现能力分析
人工智能·小程序·开源
神秘的猪头36 分钟前
Vibe Coding 实战教学:用 Trae 协作开发 Chrome 扩展 “Hulk”
前端·人工智能
盼小辉丶37 分钟前
TensorFlow深度学习实战(43)——TensorFlow.js
javascript·深度学习·tensorflow
Element_南笙41 分钟前
吴恩达新课程:Agentic AI(笔记6)
人工智能·笔记