hadoop3.0高可用分布式集群安装

hadoop高可用,依赖于zookeeper。

用于生产环境, 企业部署必须的模式.

1. 部署环境规划

1.1. 虚拟机及hadoop角色划分

|--------|----------|----------|-----------------|-------------|------|-------------|-----------|
| 主机名称 | namenode | datanode | resourcemanager | nodemanager | zkfc | journalnode | zookeeper |
| master | * | * | * | * | * | * | * |
| slave1 | * | * | | * | * | * | * |
| slave2 | | * | * | * | * | * | * |

1.2. 软件版本

|-----------|---------|
| java | jdk-1.8 |
| Hadoop | 3.3.0 |
| zookeeper | 3.7.0 |

1.3. 数据目录规划

|---------------|-----------------------|
| 名称 | 目录 |
| namenode目录 | /data/hadoop/dfs/name |
| datanode目录 | /data/hadoop/dfs/data |
| hadoop临时目录 | /data/hadoop/tmp |
| zookeeper数据目录 | /data/zookeeper/data |

2. 免密登录

3. 安装jdk

4. zookeeper安装

4.1. 解压

解压到目录/usr/local/ 下

tar -zxvf apache-zookeeper-3.7.0-bin.tar.gz -C /usr/local/zookeeper

4.2. 环境配置

cat>>/etc/profile <<EOF
export ZOOKEEPER_HOME=/usr/local/zookeeper/apache-zookeeper-3.7.0-bin
export PATH=\$ZOOKEEPER_HOME/bin:\$PATH
EOF
source /etc/profile
#创建数据/日志目录
mkdir -pv /data/zookeeper/{data,log} 

4.3. 修改配置文件

cd /usr/local/zookeeper/apache-zookeeper-3.7.0-bin/conf/
cp zoo_sample.cfg zoo.cfg

修改zoo.cfg配置文件

dataDir=/data/zookeeper/data/
dataLogDir=/data/zookeeper/log/
server.1=master:2888:3888
server.2=slave1:2888:3888
server.3=slave2:2888:3888

分发到slave1,slave2节点

scp zoo.cfg slave1:/usr/local/zookeeper/apache-zookeeper-3.7.0-bin/conf/
scp zoo.cfg slave2:/usr/local/zookeeper/apache-zookeeper-3.7.0-bin/conf/

4.4. 创建myid

根据服务器对应的数字,配置相应的myid,master配置1,slave1配置2,slave2配置3

#各节点配置,根据server.1就是1
echo 1 > /data/zookeeper/data/myid

4.5. 启动zookeeper

各个节点启动

zkServer.sh start
zkServer.sh status

5. hadoop安装

5.1. 解压

tar -zxvf hadoop-3.3.0.tar.gz -C /usr/local/

5.2. 环境配置

环境配置(所有节点都执行),root用户执行

chown -R hadoop:hadoop /usr/local/hadoop-3.3.0
cat>>/etc/profile <<EOF
export HADOOP_HOME=/usr/local/hadoop-3.3.0
export PATH=\$HADOOP_HOME/bin:\$HADOOP_HOME/sbin:\$PATH
EOF
source /etc/profile

5.3. 修改配置文件

5.3.1. hadoop-env.sh
cd $HADOOP_HOME/etc/hadoop
vi hadoop-env.sh

export JAVA_HOME=/usr/java/jdk1.8.0_311
5.3.2. core-site.xml
<configuration>
        <property>
                <name>fs.defaultFS</name>
                <value>hdfs://mycluster/</value>
          <description>自定义的集群名称</description>
        </property>
        <property>
                <name>hadoop.tmp.dir</name>
                <value>/data/hadoop/tmp</value>
        <description>namenode上本地的hadoop临时文件夹</description>
        </property>
    
    <property>
        <name>ha.zookeeper.quorum</name>
        <value>master:2181,slave1:2181,slave2:2181</value>
        <description>指定zookeeper地址</description>
    </property>
    <property>
        <name>ha.zookeeper.session-timeout.ms</name>
        <value>1000</value>
        <description>hadoop链接zookeeper的超时时长设置ms</description>
    </property>
</configuration>
5.3.3. hdfs-site.xml
<configuration>
        <property>
                <name>dfs.replication</name>
                <value>2</value>
        <description>Hadoop的备份系数是指每个block在hadoop集群中有几份,系数越高,冗余性越好,占用存储也越多</description>
        </property>
        <property>
                <name>dfs.namenode.name.dir</name>
                <value>/data/hadoop/dfs/name</value>
        <description>namenode上存储hdfs名字空间元数据 </description>
        </property>
        <property>
                <name>dfs.datanode.data.dir</name>
                <value>/data/hadoop/dfs/data</value>
        <description>datanode上数据块的物理存储位置</description>
        </property>
        <property>
                <name>dfs.webhdfs.enabled</name>
                <value>true</value>
        </property>
    <!--指定hdfs的nameservice为myha01,需要和core-site.xml中的保持一致
                 dfs.ha.namenodes.[nameservice id]为在nameservice中的每一个NameNode设置唯一标示符。
        配置一个逗号分隔的NameNode ID列表。这将是被DataNode识别为所有的NameNode。
        例如,如果使用"myha01"作为nameservice ID,并且使用"nn1"和"nn2"作为NameNodes标示符
    -->
    <property>
        <name>dfs.nameservices</name>
        <value>mycluster</value>
    </property>
 
    <!-- myha01下面有两个NameNode,分别是nn1,nn2 -->
    <property>
        <name>dfs.ha.namenodes.mycluster</name>
        <value>nn1,nn2</value>
    </property>
 
    <!-- nn1的RPC通信地址 -->
    <property>
        <name>dfs.namenode.rpc-address.mycluster.nn1</name>
        <value>master:9000</value>
    </property>
 
    <!-- nn1的http通信地址 -->
    <property>
        <name>dfs.namenode.http-address.mycluster.nn1</name>
        <value>master:50070</value>
    </property>
 
    <!-- nn2的RPC通信地址 -->
    <property>
        <name>dfs.namenode.rpc-address.mycluster.nn2</name>
        <value>slave1:9000</value>
    </property>
 
    <!-- nn2的http通信地址 -->
    <property>
        <name>dfs.namenode.http-address.mycluster.nn2</name>
        <value>slave1:50070</value>
    </property>
 
    <!-- 指定NameNode的edits元数据的共享存储位置。也就是JournalNode列表
                 该url的配置格式:qjournal://host1:port1;host2:port2;host3:port3/journalId
        journalId推荐使用nameservice,默认端口号是:8485 -->
    <property>
        <name>dfs.namenode.shared.edits.dir</name>
        <value>qjournal://master:8485;slave1:8485;slave2:8485/mycluster</value>
    </property>
 
    <!-- 指定JournalNode在本地磁盘存放数据的位置 -->
    <property>
        <name>dfs.journalnode.edits.dir</name>
        <value>/data/hadoop/data/journaldata</value>
    </property>
 
    <!-- 开启NameNode失败自动切换 -->
    <property>
        <name>dfs.ha.automatic-failover.enabled</name>
        <value>true</value>
    </property>
 
    <!-- 配置失败自动切换实现方式 -->
    <property>
        <name>dfs.client.failover.proxy.provider.mycluster</name>
        <value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
    </property>
 
    <!-- 配置隔离机制方法,多个机制用换行分割,即每个机制暂用一行 -->
    <property>
        <name>dfs.ha.fencing.methods</name>
        <value>
            sshfence
            shell(/bin/true)
        </value>
    </property>
 
    <!-- 使用sshfence隔离机制时需要ssh免登陆 -->
    <property>
        <name>dfs.ha.fencing.ssh.private-key-files</name>
        <value>/home/hadoop/.ssh/id_rsa</value>
    </property>
 
    <!-- 配置sshfence隔离机制超时时间 -->
    <property>
        <name>dfs.ha.fencing.ssh.connect-timeout</name>
        <value>30000</value>
    </property>
 
    <property>
        <name>ha.failover-controller.cli-check.rpc-timeout.ms</name>
        <value>60000</value>
    </property>
</configuration>
注意 mycluster 所有地方都要一样
5.3.4. mapred-site.xml
<configuration>
        <property>
                <name>mapreduce.framework.name</name>
                <value>yarn</value>
        <description>The runtime framework for executing MapReduce jobs. Can be one of local, classic or yarn.</description>
            <final>true</final>
        </property>
        <property>
                <name>mapreduce.jobtracker.http.address</name>
                <value>master:50030</value>
        </property>
        <property>
                <name>mapreduce.jobhistory.address</name>
                <value>master:10020</value>
        </property>
        <property>
                <name>mapreduce.jobhistory.webapp.address</name>
                <value>master:19888</value>
        </property>
        <property>
                <name>mapred.job.tracker</name>
                <value>http://master:9001</value>
        </property>
</configuration>
5.3.5. yarn-site.xml
<configuration>
       <!-- 开启RM高可用 -->
    <property>
        <name>yarn.resourcemanager.ha.enabled</name>
        <value>true</value>
    </property>
 
    <!-- 指定RM的cluster id -->
    <property>
        <name>yarn.resourcemanager.cluster-id</name>
        <value>yrc</value>
    </property>
 
    <!-- 指定RM的名字 -->
    <property>
        <name>yarn.resourcemanager.ha.rm-ids</name>
        <value>rm1,rm2</value>
    </property>
 
    <!-- 分别指定RM的地址 -->
    <property>
        <name>yarn.resourcemanager.hostname.rm1</name>
        <value>slave1</value>
    </property>
 
    <property>
        <name>yarn.resourcemanager.hostname.rm2</name>
        <value>slave2</value>
    </property>
 
    <!-- 指定zk集群地址 -->
    <property>
        <name>yarn.resourcemanager.zk-address</name>
        <value>master:2181,slave1:2181,slave2:2181</value>
    </property>
 
    <property>
        <name>yarn.nodemanager.aux-services</name>
        <value>mapreduce_shuffle</value>
    </property>
 
    <property>
        <name>yarn.log-aggregation-enable</name>
        <value>true</value>
    </property>
 
    <property>
        <name>yarn.log-aggregation.retain-seconds</name>
        <value>86400</value>
    </property>
 
    <!-- 启用自动恢复 -->
    <property>
        <name>yarn.resourcemanager.recovery.enabled</name>
        <value>true</value>
    </property>
 
    <!-- 制定resourcemanager的状态信息存储在zookeeper集群上 -->
    <property>
        <name>yarn.resourcemanager.store.class</name>
        <value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore</value>
    </property>
        <property>
                <name>yarn.application.classpath</name>       
          <value>/usr/local/hadoop-3.3.0/etc/hadoop:/usr/local/hadoop-3.3.0/share/hadoop/common/lib/*:/usr/local/hadoop-3.3.0/share/hadoop/common/*:/usr/local/hadoop-3.3.0/share/hadoop/hdfs:/usr/local/hadoop-3.3.0/share/hadoop/hdfs/lib/*:/usr/local/hadoop-3.3.0/share/hadoop/hdfs/*:/usr/local/hadoop-3.3.0/share/hadoop/mapreduce/*:/usr/local/hadoop-3.3.0/share/hadoop/yarn:/usr/local/hadoop-3.3.0/share/hadoop/yarn/lib/*:/usr/local/hadoop-3.3.0/share/hadoop/yarn/*</value>
       </property>
</configuration>
5.3.6. workers

vim workers

master
slave1
slave2

5.4. 分发到其他服务器

scp -r /usr/local/hadoop-3.3.0/ slave1:/usr/local/
scp -r /usr/local/hadoop-3.3.0/ slave2:/usr/local/

6. 启动集群

以下顺序不能错

6.1. 启动journalnode(所有节点)

hadoop-daemon.sh start journalnode

6.2. 格式化namenode(master)

hadoop namenode -format

6.3. 同步元数据

scp -r /data/hadoop/dfs/name/current/ root@slave1:/data/hadoop/dfs/name/

6.4. 格式化zkfc(master)

hdfs zkfc -formatZK

6.5. 启动HDFS(master)

start-yarn.sh

6.6. 查看各主节点状态hdfs/yarn

hdfs haadmin -getServiceState nn1
hdfs haadmin -getServiceState nn2
yarn rmadmin -getServiceState rm1
yarn rmadmin -getServiceState rm2

7. 查看页面

hdfs:http://master:9870

接付费咨询,调bug, 10元一次。+v:644789108

相关推荐
大数据魔法师6 小时前
Hadoop生态圈框架部署(六)- HBase完全分布式部署
hadoop·分布式·hbase
紫色沙7 小时前
大数据专业为什么要学习Hadoop课程
大数据·hadoop·学习
武子康11 小时前
大数据-218 Prometheus 插件 exporter 与 pushgateway 配置使用 监控服务 使用场景
大数据·hive·hadoop·flink·spark·prometheus
解怡椿13 小时前
Zookeeper的安装与使用
大数据·hadoop·zookeeper
⚆Pearl13 小时前
【Hadoop实训】Flume系统负载均衡测试
服务器·hadoop·负载均衡·flume
Francek Chen13 小时前
【大数据技术基础 | 实验九】Flume实验:文件数据Flume至HDFS
大数据·hadoop·分布式·hdfs·flume
hamish-wu14 小时前
Dolphinscheduler配置dataX离线采集任务写入hive实践(二)
数据仓库·hive·hadoop
勤匠16 小时前
hadoop 3.x 伪分布式搭建
大数据·hadoop·分布式
编码小袁16 小时前
深入解析Hadoop:大数据处理的基石
大数据·hadoop·分布式
张小凡vip16 小时前
Hadoop积累---Hadoop判断job和map的开始和结束(带源码)
大数据·hadoop·分布式