hadoop3.0高可用分布式集群安装

hadoop高可用,依赖于zookeeper。

用于生产环境, 企业部署必须的模式.

1. 部署环境规划

1.1. 虚拟机及hadoop角色划分

|--------|----------|----------|-----------------|-------------|------|-------------|-----------|
| 主机名称 | namenode | datanode | resourcemanager | nodemanager | zkfc | journalnode | zookeeper |
| master | * | * | * | * | * | * | * |
| slave1 | * | * | | * | * | * | * |
| slave2 | | * | * | * | * | * | * |

1.2. 软件版本

|-----------|---------|
| java | jdk-1.8 |
| Hadoop | 3.3.0 |
| zookeeper | 3.7.0 |

1.3. 数据目录规划

|---------------|-----------------------|
| 名称 | 目录 |
| namenode目录 | /data/hadoop/dfs/name |
| datanode目录 | /data/hadoop/dfs/data |
| hadoop临时目录 | /data/hadoop/tmp |
| zookeeper数据目录 | /data/zookeeper/data |

2. 免密登录

3. 安装jdk

4. zookeeper安装

4.1. 解压

解压到目录/usr/local/ 下

tar -zxvf apache-zookeeper-3.7.0-bin.tar.gz -C /usr/local/zookeeper

4.2. 环境配置

复制代码
cat>>/etc/profile <<EOF
export ZOOKEEPER_HOME=/usr/local/zookeeper/apache-zookeeper-3.7.0-bin
export PATH=\$ZOOKEEPER_HOME/bin:\$PATH
EOF
source /etc/profile
#创建数据/日志目录
mkdir -pv /data/zookeeper/{data,log} 

4.3. 修改配置文件

复制代码
cd /usr/local/zookeeper/apache-zookeeper-3.7.0-bin/conf/
cp zoo_sample.cfg zoo.cfg

修改zoo.cfg配置文件

复制代码
dataDir=/data/zookeeper/data/
dataLogDir=/data/zookeeper/log/
server.1=master:2888:3888
server.2=slave1:2888:3888
server.3=slave2:2888:3888

分发到slave1,slave2节点

复制代码
scp zoo.cfg slave1:/usr/local/zookeeper/apache-zookeeper-3.7.0-bin/conf/
scp zoo.cfg slave2:/usr/local/zookeeper/apache-zookeeper-3.7.0-bin/conf/

4.4. 创建myid

根据服务器对应的数字,配置相应的myid,master配置1,slave1配置2,slave2配置3

复制代码
#各节点配置,根据server.1就是1
echo 1 > /data/zookeeper/data/myid

4.5. 启动zookeeper

各个节点启动

复制代码
zkServer.sh start
zkServer.sh status

5. hadoop安装

5.1. 解压

复制代码
tar -zxvf hadoop-3.3.0.tar.gz -C /usr/local/

5.2. 环境配置

环境配置(所有节点都执行),root用户执行

复制代码
chown -R hadoop:hadoop /usr/local/hadoop-3.3.0
cat>>/etc/profile <<EOF
export HADOOP_HOME=/usr/local/hadoop-3.3.0
export PATH=\$HADOOP_HOME/bin:\$HADOOP_HOME/sbin:\$PATH
EOF
source /etc/profile

5.3. 修改配置文件

5.3.1. hadoop-env.sh
复制代码
cd $HADOOP_HOME/etc/hadoop
vi hadoop-env.sh

export JAVA_HOME=/usr/java/jdk1.8.0_311
5.3.2. core-site.xml
复制代码
<configuration>
        <property>
                <name>fs.defaultFS</name>
                <value>hdfs://mycluster/</value>
          <description>自定义的集群名称</description>
        </property>
        <property>
                <name>hadoop.tmp.dir</name>
                <value>/data/hadoop/tmp</value>
        <description>namenode上本地的hadoop临时文件夹</description>
        </property>
    
    <property>
        <name>ha.zookeeper.quorum</name>
        <value>master:2181,slave1:2181,slave2:2181</value>
        <description>指定zookeeper地址</description>
    </property>
    <property>
        <name>ha.zookeeper.session-timeout.ms</name>
        <value>1000</value>
        <description>hadoop链接zookeeper的超时时长设置ms</description>
    </property>
</configuration>
5.3.3. hdfs-site.xml
复制代码
<configuration>
        <property>
                <name>dfs.replication</name>
                <value>2</value>
        <description>Hadoop的备份系数是指每个block在hadoop集群中有几份,系数越高,冗余性越好,占用存储也越多</description>
        </property>
        <property>
                <name>dfs.namenode.name.dir</name>
                <value>/data/hadoop/dfs/name</value>
        <description>namenode上存储hdfs名字空间元数据 </description>
        </property>
        <property>
                <name>dfs.datanode.data.dir</name>
                <value>/data/hadoop/dfs/data</value>
        <description>datanode上数据块的物理存储位置</description>
        </property>
        <property>
                <name>dfs.webhdfs.enabled</name>
                <value>true</value>
        </property>
    <!--指定hdfs的nameservice为myha01,需要和core-site.xml中的保持一致
                 dfs.ha.namenodes.[nameservice id]为在nameservice中的每一个NameNode设置唯一标示符。
        配置一个逗号分隔的NameNode ID列表。这将是被DataNode识别为所有的NameNode。
        例如,如果使用"myha01"作为nameservice ID,并且使用"nn1"和"nn2"作为NameNodes标示符
    -->
    <property>
        <name>dfs.nameservices</name>
        <value>mycluster</value>
    </property>
 
    <!-- myha01下面有两个NameNode,分别是nn1,nn2 -->
    <property>
        <name>dfs.ha.namenodes.mycluster</name>
        <value>nn1,nn2</value>
    </property>
 
    <!-- nn1的RPC通信地址 -->
    <property>
        <name>dfs.namenode.rpc-address.mycluster.nn1</name>
        <value>master:9000</value>
    </property>
 
    <!-- nn1的http通信地址 -->
    <property>
        <name>dfs.namenode.http-address.mycluster.nn1</name>
        <value>master:50070</value>
    </property>
 
    <!-- nn2的RPC通信地址 -->
    <property>
        <name>dfs.namenode.rpc-address.mycluster.nn2</name>
        <value>slave1:9000</value>
    </property>
 
    <!-- nn2的http通信地址 -->
    <property>
        <name>dfs.namenode.http-address.mycluster.nn2</name>
        <value>slave1:50070</value>
    </property>
 
    <!-- 指定NameNode的edits元数据的共享存储位置。也就是JournalNode列表
                 该url的配置格式:qjournal://host1:port1;host2:port2;host3:port3/journalId
        journalId推荐使用nameservice,默认端口号是:8485 -->
    <property>
        <name>dfs.namenode.shared.edits.dir</name>
        <value>qjournal://master:8485;slave1:8485;slave2:8485/mycluster</value>
    </property>
 
    <!-- 指定JournalNode在本地磁盘存放数据的位置 -->
    <property>
        <name>dfs.journalnode.edits.dir</name>
        <value>/data/hadoop/data/journaldata</value>
    </property>
 
    <!-- 开启NameNode失败自动切换 -->
    <property>
        <name>dfs.ha.automatic-failover.enabled</name>
        <value>true</value>
    </property>
 
    <!-- 配置失败自动切换实现方式 -->
    <property>
        <name>dfs.client.failover.proxy.provider.mycluster</name>
        <value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
    </property>
 
    <!-- 配置隔离机制方法,多个机制用换行分割,即每个机制暂用一行 -->
    <property>
        <name>dfs.ha.fencing.methods</name>
        <value>
            sshfence
            shell(/bin/true)
        </value>
    </property>
 
    <!-- 使用sshfence隔离机制时需要ssh免登陆 -->
    <property>
        <name>dfs.ha.fencing.ssh.private-key-files</name>
        <value>/home/hadoop/.ssh/id_rsa</value>
    </property>
 
    <!-- 配置sshfence隔离机制超时时间 -->
    <property>
        <name>dfs.ha.fencing.ssh.connect-timeout</name>
        <value>30000</value>
    </property>
 
    <property>
        <name>ha.failover-controller.cli-check.rpc-timeout.ms</name>
        <value>60000</value>
    </property>
</configuration>
注意 mycluster 所有地方都要一样
5.3.4. mapred-site.xml
复制代码
<configuration>
        <property>
                <name>mapreduce.framework.name</name>
                <value>yarn</value>
        <description>The runtime framework for executing MapReduce jobs. Can be one of local, classic or yarn.</description>
            <final>true</final>
        </property>
        <property>
                <name>mapreduce.jobtracker.http.address</name>
                <value>master:50030</value>
        </property>
        <property>
                <name>mapreduce.jobhistory.address</name>
                <value>master:10020</value>
        </property>
        <property>
                <name>mapreduce.jobhistory.webapp.address</name>
                <value>master:19888</value>
        </property>
        <property>
                <name>mapred.job.tracker</name>
                <value>http://master:9001</value>
        </property>
</configuration>
5.3.5. yarn-site.xml
复制代码
<configuration>
       <!-- 开启RM高可用 -->
    <property>
        <name>yarn.resourcemanager.ha.enabled</name>
        <value>true</value>
    </property>
 
    <!-- 指定RM的cluster id -->
    <property>
        <name>yarn.resourcemanager.cluster-id</name>
        <value>yrc</value>
    </property>
 
    <!-- 指定RM的名字 -->
    <property>
        <name>yarn.resourcemanager.ha.rm-ids</name>
        <value>rm1,rm2</value>
    </property>
 
    <!-- 分别指定RM的地址 -->
    <property>
        <name>yarn.resourcemanager.hostname.rm1</name>
        <value>slave1</value>
    </property>
 
    <property>
        <name>yarn.resourcemanager.hostname.rm2</name>
        <value>slave2</value>
    </property>
 
    <!-- 指定zk集群地址 -->
    <property>
        <name>yarn.resourcemanager.zk-address</name>
        <value>master:2181,slave1:2181,slave2:2181</value>
    </property>
 
    <property>
        <name>yarn.nodemanager.aux-services</name>
        <value>mapreduce_shuffle</value>
    </property>
 
    <property>
        <name>yarn.log-aggregation-enable</name>
        <value>true</value>
    </property>
 
    <property>
        <name>yarn.log-aggregation.retain-seconds</name>
        <value>86400</value>
    </property>
 
    <!-- 启用自动恢复 -->
    <property>
        <name>yarn.resourcemanager.recovery.enabled</name>
        <value>true</value>
    </property>
 
    <!-- 制定resourcemanager的状态信息存储在zookeeper集群上 -->
    <property>
        <name>yarn.resourcemanager.store.class</name>
        <value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore</value>
    </property>
        <property>
                <name>yarn.application.classpath</name>       
          <value>/usr/local/hadoop-3.3.0/etc/hadoop:/usr/local/hadoop-3.3.0/share/hadoop/common/lib/*:/usr/local/hadoop-3.3.0/share/hadoop/common/*:/usr/local/hadoop-3.3.0/share/hadoop/hdfs:/usr/local/hadoop-3.3.0/share/hadoop/hdfs/lib/*:/usr/local/hadoop-3.3.0/share/hadoop/hdfs/*:/usr/local/hadoop-3.3.0/share/hadoop/mapreduce/*:/usr/local/hadoop-3.3.0/share/hadoop/yarn:/usr/local/hadoop-3.3.0/share/hadoop/yarn/lib/*:/usr/local/hadoop-3.3.0/share/hadoop/yarn/*</value>
       </property>
</configuration>
5.3.6. workers

vim workers

复制代码
master
slave1
slave2

5.4. 分发到其他服务器

复制代码
scp -r /usr/local/hadoop-3.3.0/ slave1:/usr/local/
scp -r /usr/local/hadoop-3.3.0/ slave2:/usr/local/

6. 启动集群

以下顺序不能错

6.1. 启动journalnode(所有节点)

复制代码
hadoop-daemon.sh start journalnode

6.2. 格式化namenode(master)

复制代码
hadoop namenode -format

6.3. 同步元数据

复制代码
scp -r /data/hadoop/dfs/name/current/ root@slave1:/data/hadoop/dfs/name/

6.4. 格式化zkfc(master)

复制代码
hdfs zkfc -formatZK

6.5. 启动HDFS(master)

复制代码
start-yarn.sh

6.6. 查看各主节点状态hdfs/yarn

复制代码
hdfs haadmin -getServiceState nn1
hdfs haadmin -getServiceState nn2
yarn rmadmin -getServiceState rm1
yarn rmadmin -getServiceState rm2

7. 查看页面

复制代码
hdfs:http://master:9870

接付费咨询,调bug, 10元一次。+v:644789108

相关推荐
Aurora_eye10 小时前
记录之Ubuntu22.4虚拟机及hadoop为分布式安装
大数据·hadoop·分布式
随心............1 天前
在开发过程中遇到问题如何解决,以及两个经典问题
hive·hadoop·spark
yumgpkpm1 天前
CMP (类ClouderaCDP7.3(404次编译) )华为鲲鹏Aarch64(ARM)信创环境 查询2100w行 hive 查询策略
数据库·数据仓库·hive·hadoop·flink·mapreduce·big data
K_i1342 天前
Hadoop 集群自动化运维实战
运维·hadoop·自动化
Q26433650232 天前
【有源码】基于Python与Spark的火锅店数据可视化分析系统-基于机器学习的火锅店综合竞争力评估与可视化分析-基于用户画像聚类的火锅店市场细分与可视化研究
大数据·hadoop·python·机器学习·数据分析·spark·毕业设计
顧棟3 天前
【Yarn实战】Yarn 2.9.1滚动升级到3.4.1调研与实践验证
hadoop·yarn
D明明就是我3 天前
Hive 拉链表
数据仓库·hive·hadoop
嘉禾望岗5033 天前
hive join优化和数据倾斜处理
数据仓库·hive·hadoop
yumgpkpm3 天前
华为鲲鹏 Aarch64 环境下多 Oracle 数据库汇聚操作指南 CMP(类 Cloudera CDP 7.3)
大数据·hive·hadoop·elasticsearch·zookeeper·big data·cloudera
忧郁火龙果3 天前
六、Hive的基本使用
数据仓库·hive·hadoop