前视声呐目标识别定位(五)-代码解析之修改声呐参数

前视声呐目标识别定位(一)-基础知识

前视声呐目标识别定位(二)-目标识别定位模块

前视声呐目标识别定位(三)-部署至机器人

前视声呐目标识别定位(四)-代码解析之启动识别模块

前视声呐目标识别定位(五)-代码解析之修改声呐参数

前视声呐目标识别定位(六)-代码解析之目标截图并传输

前视声呐目标识别定位(七)-代码解析之录制数据包

前视声呐目标识别定位(八)-代码解析之各模块通信

前视声呐目标识别定位(九)-声呐驱动

修改声呐参数,以将声呐量程修改为10m为例,其余参数修改可参照协议文件。

1、client_test.py

python3 clien_test.py 13 10

python 复制代码
elif cmd == str(13):
    print("set sonar range: " + str(value))
    arrBuff = b'\xee\xbb\xee\x03'
    arrBuff += struct.pack('i', int(value))
    arrBuff += b'\xee\xaa\xee\xff'

在协议文件中,修改声呐量程的协议为:

故模块将该数据包发送至auv_server。

2、auv_server.py

python 复制代码
# cmd callback state msg
if pkg_head == b'\xee\xff\xee\xff':
    print(self.cmd_callback_state[recv_msg[4:8]])

直接将指令转发至center_server

3、center_sever.py

python 复制代码
# send the control_center cmd from auv to the control_center module on nx
def recv_control_center_msg(self):
    #self.sonar_param_socket, self.sonar_param_addr = self.sonar_param_server.accept()  
    while True:          
        cmd_msg = self.nx_client.recv(1024)
        if len(cmd_msg) > 3:
            # send the control_center cmd to the control_center module
            if cmd_msg[-4:] == b'\xee\xff\xee\xff':
                self.control_center_socket.send(cmd_msg)
            # send the sonar parameters cmd to the sonar module
            elif cmd_msg[-4:] == b'\xee\xaa\xee\xff':
                self.sonar_param_socket.send(cmd_msg)
            else:
                print("cmd from auv error, no such cmd...")

根据'\ee\aa\ee\ff'判断为带参数的指令,转sonar_node

4、sonar_node(此处以ros1版本中的驱动代码举例)

python 复制代码
# receive tcp cmd msg from center server, set the sonar parameter
def recv_tcp_cmd(self):
...
# set the sonar_range, 1~120
elif sonar_msg[0:4] == b'\xee\xbb\xee\x03':
    sonar_range = struct.unpack('i', sonar_msg[4:8])[0]
    sonar_range_cmd = 'rosrun dynamic_reconfigure dynparam set sonar_imager range_m ' + str(sonar_range)
    sonar_subprocess = subprocess.Popen(sonar_range_cmd, shell=True, executable="/bin/bash")

完成设置

数据包通过网口传输至声呐,声呐解码后进行参数调整。

相关推荐
pen-ai13 小时前
【YOLO系列】 YOLOv1 目标检测算法原理详解
算法·yolo·目标检测
沃达德软件16 小时前
视频侦查图像清晰化技术
图像处理·人工智能·目标检测·机器学习·计算机视觉·视觉检测·超分辨率重建
工程师老罗17 小时前
目标检测的常见数据集
人工智能·目标检测·计算机视觉
IRevers17 小时前
RF-DETR:第一个在COCO上突破60AP的DETR(含检测和分割推理)
图像处理·人工智能·python·深度学习·目标检测·计算机视觉
极智视界1 天前
无人机场景 - 目标检测数据集 - 停车场停车位检测数据集下载
yolo·目标检测·数据集·无人机·voc·coco·算法训练
极智视界1 天前
目标检测数据集 - 空中固定翼无人机检测数据集下载
yolo·目标检测·数据集·无人机·voc·coco·算法训练
2501_941337061 天前
YOLO11-C3k2-RAB改进模型在航拍军事目标检测中的应用与实现
人工智能·目标检测·目标跟踪
Piar1231sdafa2 天前
蓝莓目标检测——改进YOLO11-C2TSSA-DYT-Mona模型实现
人工智能·目标检测·计算机视觉
AI浩2 天前
C-RADIOv4(技术报告)
人工智能·目标检测
小白狮ww2 天前
Ovis-Image:卓越的图像生成模型
人工智能·深度学习·目标检测·机器学习·cpu·gpu·视觉分割模型