前视声呐目标识别定位(五)-代码解析之修改声呐参数

前视声呐目标识别定位(一)-基础知识

前视声呐目标识别定位(二)-目标识别定位模块

前视声呐目标识别定位(三)-部署至机器人

前视声呐目标识别定位(四)-代码解析之启动识别模块

前视声呐目标识别定位(五)-代码解析之修改声呐参数

前视声呐目标识别定位(六)-代码解析之目标截图并传输

前视声呐目标识别定位(七)-代码解析之录制数据包

前视声呐目标识别定位(八)-代码解析之各模块通信

前视声呐目标识别定位(九)-声呐驱动

修改声呐参数,以将声呐量程修改为10m为例,其余参数修改可参照协议文件。

1、client_test.py

python3 clien_test.py 13 10

python 复制代码
elif cmd == str(13):
    print("set sonar range: " + str(value))
    arrBuff = b'\xee\xbb\xee\x03'
    arrBuff += struct.pack('i', int(value))
    arrBuff += b'\xee\xaa\xee\xff'

在协议文件中,修改声呐量程的协议为:

故模块将该数据包发送至auv_server。

2、auv_server.py

python 复制代码
# cmd callback state msg
if pkg_head == b'\xee\xff\xee\xff':
    print(self.cmd_callback_state[recv_msg[4:8]])

直接将指令转发至center_server

3、center_sever.py

python 复制代码
# send the control_center cmd from auv to the control_center module on nx
def recv_control_center_msg(self):
    #self.sonar_param_socket, self.sonar_param_addr = self.sonar_param_server.accept()  
    while True:          
        cmd_msg = self.nx_client.recv(1024)
        if len(cmd_msg) > 3:
            # send the control_center cmd to the control_center module
            if cmd_msg[-4:] == b'\xee\xff\xee\xff':
                self.control_center_socket.send(cmd_msg)
            # send the sonar parameters cmd to the sonar module
            elif cmd_msg[-4:] == b'\xee\xaa\xee\xff':
                self.sonar_param_socket.send(cmd_msg)
            else:
                print("cmd from auv error, no such cmd...")

根据'\ee\aa\ee\ff'判断为带参数的指令,转sonar_node

4、sonar_node(此处以ros1版本中的驱动代码举例)

python 复制代码
# receive tcp cmd msg from center server, set the sonar parameter
def recv_tcp_cmd(self):
...
# set the sonar_range, 1~120
elif sonar_msg[0:4] == b'\xee\xbb\xee\x03':
    sonar_range = struct.unpack('i', sonar_msg[4:8])[0]
    sonar_range_cmd = 'rosrun dynamic_reconfigure dynparam set sonar_imager range_m ' + str(sonar_range)
    sonar_subprocess = subprocess.Popen(sonar_range_cmd, shell=True, executable="/bin/bash")

完成设置

数据包通过网口传输至声呐,声呐解码后进行参数调整。

相关推荐
思通数科多模态大模型21 小时前
10大核心应用场景,解锁AI检测系统的智能安全之道
人工智能·深度学习·安全·目标检测·计算机视觉·自然语言处理·数据挖掘
sp_fyf_20241 天前
【大语言模型】ACL2024论文-18 MINPROMPT:基于图的最小提示数据增强用于少样本问答
人工智能·深度学习·神经网络·目标检测·机器学习·语言模型·自然语言处理
思通数科AI全行业智能NLP系统1 天前
六大核心应用场景,解锁AI检测系统的智能安全之道
图像处理·人工智能·深度学习·安全·目标检测·计算机视觉·知识图谱
非自律懒癌患者1 天前
Transformer中的Self-Attention机制如何自然地适应于目标检测任务
人工智能·算法·目标检测
菠菠萝宝1 天前
【YOLOv8】安卓端部署-1-项目介绍
android·java·c++·yolo·目标检测·目标跟踪·kotlin
Eric.Lee20211 天前
数据集-目标检测系列- 花卉 玫瑰 检测数据集 rose >> DataBall
人工智能·目标检测·计算机视觉
Eric.Lee20212 天前
数据集-目标检测系列- 花卉 鸡蛋花 检测数据集 frangipani >> DataBall
人工智能·python·yolo·目标检测·计算机视觉·鸡蛋花检查
深度学习lover3 天前
<项目代码>YOLOv8 草莓成熟识别<目标检测>
人工智能·python·yolo·目标检测·计算机视觉·草莓成熟识别
铭瑾熙3 天前
深度学习之目标检测的技巧汇总
人工智能·深度学习·目标检测
迪菲赫尔曼3 天前
即插即用篇 | YOLOv11 引入高效的直方图Transformer模块 | 突破天气障碍:Histoformer引领高效图像修复新路径
人工智能·深度学习·yolo·目标检测·计算机视觉·transformer·注意力机制