前视声呐目标识别定位(五)-代码解析之修改声呐参数

前视声呐目标识别定位(一)-基础知识

前视声呐目标识别定位(二)-目标识别定位模块

前视声呐目标识别定位(三)-部署至机器人

前视声呐目标识别定位(四)-代码解析之启动识别模块

前视声呐目标识别定位(五)-代码解析之修改声呐参数

前视声呐目标识别定位(六)-代码解析之目标截图并传输

前视声呐目标识别定位(七)-代码解析之录制数据包

前视声呐目标识别定位(八)-代码解析之各模块通信

前视声呐目标识别定位(九)-声呐驱动

修改声呐参数,以将声呐量程修改为10m为例,其余参数修改可参照协议文件。

1、client_test.py

python3 clien_test.py 13 10

python 复制代码
elif cmd == str(13):
    print("set sonar range: " + str(value))
    arrBuff = b'\xee\xbb\xee\x03'
    arrBuff += struct.pack('i', int(value))
    arrBuff += b'\xee\xaa\xee\xff'

在协议文件中,修改声呐量程的协议为:

故模块将该数据包发送至auv_server。

2、auv_server.py

python 复制代码
# cmd callback state msg
if pkg_head == b'\xee\xff\xee\xff':
    print(self.cmd_callback_state[recv_msg[4:8]])

直接将指令转发至center_server

3、center_sever.py

python 复制代码
# send the control_center cmd from auv to the control_center module on nx
def recv_control_center_msg(self):
    #self.sonar_param_socket, self.sonar_param_addr = self.sonar_param_server.accept()  
    while True:          
        cmd_msg = self.nx_client.recv(1024)
        if len(cmd_msg) > 3:
            # send the control_center cmd to the control_center module
            if cmd_msg[-4:] == b'\xee\xff\xee\xff':
                self.control_center_socket.send(cmd_msg)
            # send the sonar parameters cmd to the sonar module
            elif cmd_msg[-4:] == b'\xee\xaa\xee\xff':
                self.sonar_param_socket.send(cmd_msg)
            else:
                print("cmd from auv error, no such cmd...")

根据'\ee\aa\ee\ff'判断为带参数的指令,转sonar_node

4、sonar_node(此处以ros1版本中的驱动代码举例)

python 复制代码
# receive tcp cmd msg from center server, set the sonar parameter
def recv_tcp_cmd(self):
...
# set the sonar_range, 1~120
elif sonar_msg[0:4] == b'\xee\xbb\xee\x03':
    sonar_range = struct.unpack('i', sonar_msg[4:8])[0]
    sonar_range_cmd = 'rosrun dynamic_reconfigure dynparam set sonar_imager range_m ' + str(sonar_range)
    sonar_subprocess = subprocess.Popen(sonar_range_cmd, shell=True, executable="/bin/bash")

完成设置

数据包通过网口传输至声呐,声呐解码后进行参数调整。

相关推荐
lxmyzzs12 小时前
【打怪升级 - 03】YOLO11/YOLO12/YOLOv10/YOLOv8 完全指南:从理论到代码实战,新手入门必看教程
人工智能·神经网络·yolo·目标检测·计算机视觉
Coovally AI模型快速验证12 小时前
数据集分享 | 智慧农业实战数据集精选
人工智能·算法·目标检测·机器学习·计算机视觉·目标跟踪·无人机
Blossom.1181 天前
基于深度学习的图像分类:使用DenseNet实现高效分类
人工智能·深度学习·目标检测·机器学习·分类·数据挖掘·迁移学习
lxmyzzs2 天前
【已解决】YOLO11模型转wts时报错:PytorchStreamReader failed reading zip archive
人工智能·python·深度学习·神经网络·目标检测·计算机视觉·bug
Blossom.1182 天前
基于深度学习的图像分类:使用预训练模型进行迁移学习
人工智能·深度学习·目标检测·分类·音视频·语音识别·迁移学习
Silver〄line2 天前
前端图像视频实时检测
前端·目标检测·canva可画
北京地铁1号线3 天前
YOLO12论文阅读:Attention-Centric Real-Time Object Detectors
论文阅读·yolo·目标检测
思通数科x3 天前
病历数智化3分钟:AI重构医院数据价值链
大数据·图像处理·人工智能·目标检测·计算机视觉·重构·ocr
LGGGGGQ4 天前
嵌入式学习-土堆目标检测(4)-day28
人工智能·学习·目标检测
沉睡的无敌雄狮4 天前
无人机光伏巡检误检率↓78%!陌讯多模态融合算法实战解析
算法·目标检测·计算机视觉·目标跟踪·视觉检测·无人机·边缘计算