pytorch-分类-检测-分割的dataset和dataloader创建

1.前言

在PyTorch中,DatasetDataLoader是两个重要的工具,用于构建输入数据的管道。

(1)Dataset是一个抽象类,表示数据集,需要实现__len____getitem__方法。

(2)DataLoader是一个可迭代的数据加载器,它封装了数据集的加载、批处理、打乱和并行加载等功能。

2.分类任务创建DatasetDataLoader

(1)对于分类任务,Dataset需要返回图像和对应的标签

python 复制代码
from torch.utils.data import Dataset  
from PIL import Image  
import os  
import torch  
  
class ClassificationDataset(Dataset):  
    def __init__(self, root_dir, transform=None):  
        self.transform = transform  
        self.images = [os.path.join(root_dir, img) for img in os.listdir(root_dir) if img.endswith('.jpg')]  
        self.labels = [...]  # 这里应该是与图像对应的标签列表  
  
    def __len__(self):  
        return len(self.images)  
  
    def __getitem__(self, idx):  
        img_path = self.images[idx]  
        image = Image.open(img_path).convert('RGB')  
        label = self.labels[idx]  
          
        if self.transform:  
            image = self.transform(image)  
          
        return image, label

(2)DataLoader加载数据

python 复制代码
from torch.utils.data import DataLoader  
  
transform = ...  # 这里定义你的数据预处理流程  
dataset = ClassificationDataset(root_dir='path_to_your_data', transform=transform)  
dataloader = DataLoader(dataset, batch_size=32, shuffle=True)

3.检测任务创建DatasetDataLoader

(1)Dataset需要返回图像和对应的边界框信息

python 复制代码
class DetectionDataset(Dataset):  
    def __init__(self, root_dir, transform=None):  
        self.transform = transform  
        self.images = [os.path.join(root_dir, img) for img in os.listdir(root_dir) if img.endswith('.jpg')]  
        self.annotations = [...]  # 这里应该是与图像对应的边界框信息列表  
  
    def __len__(self):  
        return len(self.images)  
  
    def __getitem__(self, idx):  
        img_path = self.images[idx]  
        image = Image.open(img_path).convert('RGB')  
        boxes = self.annotations[idx]  # 这些是边界框信息  
  
        if self.transform:  
            image, boxes = self.transform(image, boxes)  
          
        return image, boxes

(2)DataLoader加载数据

python 复制代码
dataloader = DataLoader(DetectionDataset(root_dir='path_to_your_data', transform=transform), batch_size=2, shuffle=True)

4.分割任务创建DatasetDataLoader

(1)Dataset需要返回图像和对应的分割掩码

python 复制代码
class SegmentationDataset(Dataset):  
    def __init__(self, root_dir, transform=None):  
        self.transform = transform  
        self.images = [os.path.join(root_dir, img) for img in os.listdir(root_dir) if img.endswith('.jpg')]  
        self.masks = [...]  # 这里应该是与图像对应的分割掩码列表  
  
    def __len__(self):  
        return len(self.images)  
  
    def __getitem__(self, idx):  
        img_path = self.images[idx]  
        mask_path = self.masks[idx]  
        image = Image.open(img_path).convert('RGB')  
        mask = Image.open(mask_path).convert('L')  # 假设掩码是灰度图  
  
        if self.transform:  
            image, mask = self.transform(image, mask)  
          
        return image, mask

(2)DataLoader加载数据

python 复制代码
dataloader = DataLoader(SegmentationDataset(root_dir='path_to_your_data', transform=transform), batch_size=4, shuffle=True)

在PyTorch的DatasetDataLoader框架中,idx(或称为索引)是通过迭代DataLoader时自动生成的。当你创建一个DataLoader实例,并在训练循环中迭代它时,DataLoader会内部调用Dataset__getitem__方法,并自动为你提供索引idx

相关推荐
MYH5161 分钟前
多标签多分类 用什么函数激活
深度学习·机器学习·分类
数据与人工智能律师2 分钟前
数据淘金时代:公开爬取如何避开法律雷区?
网络·人工智能·算法·云计算·区块链
红衣信8 分钟前
探索智能前端语音技术:从交互体验到敏感信息保护
前端·人工智能·前端框架
亚马逊云开发者20 分钟前
认识 SwiftChat:一款跨平台、高性能的 AI 助手应用程序
人工智能
只有左边一个小酒窝43 分钟前
(十三)计算机视觉中的深度学习:特征表示、模型架构与视觉认知原理
人工智能·深度学习·计算机视觉
小深ai硬件分享1 小时前
ChatGPT革命升级!o3-pro模型重磅发布:开启AI推理新纪元
运维·服务器·人工智能·深度学习
东临碣石822 小时前
【AI论文】利用自注意力机制实现大型语言模型(LLMs)中依赖于输入的软提示
人工智能·深度学习·语言模型
军军君012 小时前
基于Springboot+UniApp+Ai实现模拟面试小工具一:系统需求分析及设计
前端·vue.js·人工智能·spring boot·后端·uni-app·node.js
科技小E6 小时前
睡岗检测算法AI智能分析网关V4全场景智能守护,筑牢安全效率防线
网络·人工智能·安全