pytorch-分类-检测-分割的dataset和dataloader创建

1.前言

在PyTorch中,DatasetDataLoader是两个重要的工具,用于构建输入数据的管道。

(1)Dataset是一个抽象类,表示数据集,需要实现__len____getitem__方法。

(2)DataLoader是一个可迭代的数据加载器,它封装了数据集的加载、批处理、打乱和并行加载等功能。

2.分类任务创建DatasetDataLoader

(1)对于分类任务,Dataset需要返回图像和对应的标签

python 复制代码
from torch.utils.data import Dataset  
from PIL import Image  
import os  
import torch  
  
class ClassificationDataset(Dataset):  
    def __init__(self, root_dir, transform=None):  
        self.transform = transform  
        self.images = [os.path.join(root_dir, img) for img in os.listdir(root_dir) if img.endswith('.jpg')]  
        self.labels = [...]  # 这里应该是与图像对应的标签列表  
  
    def __len__(self):  
        return len(self.images)  
  
    def __getitem__(self, idx):  
        img_path = self.images[idx]  
        image = Image.open(img_path).convert('RGB')  
        label = self.labels[idx]  
          
        if self.transform:  
            image = self.transform(image)  
          
        return image, label

(2)DataLoader加载数据

python 复制代码
from torch.utils.data import DataLoader  
  
transform = ...  # 这里定义你的数据预处理流程  
dataset = ClassificationDataset(root_dir='path_to_your_data', transform=transform)  
dataloader = DataLoader(dataset, batch_size=32, shuffle=True)

3.检测任务创建DatasetDataLoader

(1)Dataset需要返回图像和对应的边界框信息

python 复制代码
class DetectionDataset(Dataset):  
    def __init__(self, root_dir, transform=None):  
        self.transform = transform  
        self.images = [os.path.join(root_dir, img) for img in os.listdir(root_dir) if img.endswith('.jpg')]  
        self.annotations = [...]  # 这里应该是与图像对应的边界框信息列表  
  
    def __len__(self):  
        return len(self.images)  
  
    def __getitem__(self, idx):  
        img_path = self.images[idx]  
        image = Image.open(img_path).convert('RGB')  
        boxes = self.annotations[idx]  # 这些是边界框信息  
  
        if self.transform:  
            image, boxes = self.transform(image, boxes)  
          
        return image, boxes

(2)DataLoader加载数据

python 复制代码
dataloader = DataLoader(DetectionDataset(root_dir='path_to_your_data', transform=transform), batch_size=2, shuffle=True)

4.分割任务创建DatasetDataLoader

(1)Dataset需要返回图像和对应的分割掩码

python 复制代码
class SegmentationDataset(Dataset):  
    def __init__(self, root_dir, transform=None):  
        self.transform = transform  
        self.images = [os.path.join(root_dir, img) for img in os.listdir(root_dir) if img.endswith('.jpg')]  
        self.masks = [...]  # 这里应该是与图像对应的分割掩码列表  
  
    def __len__(self):  
        return len(self.images)  
  
    def __getitem__(self, idx):  
        img_path = self.images[idx]  
        mask_path = self.masks[idx]  
        image = Image.open(img_path).convert('RGB')  
        mask = Image.open(mask_path).convert('L')  # 假设掩码是灰度图  
  
        if self.transform:  
            image, mask = self.transform(image, mask)  
          
        return image, mask

(2)DataLoader加载数据

python 复制代码
dataloader = DataLoader(SegmentationDataset(root_dir='path_to_your_data', transform=transform), batch_size=4, shuffle=True)

在PyTorch的DatasetDataLoader框架中,idx(或称为索引)是通过迭代DataLoader时自动生成的。当你创建一个DataLoader实例,并在训练循环中迭代它时,DataLoader会内部调用Dataset__getitem__方法,并自动为你提供索引idx

相关推荐
CELLGENE BIOSCIENCE5 分钟前
精准检测,洞见未来|赛唐生物应邀出席2026张江药谷产业发展闭门交流会,共话药物质量安全新篇章
大数据·人工智能
啊阿狸不会拉杆6 分钟前
《机器学习导论》第 1 章 - 引言
人工智能·python·算法·机器学习·ai·numpy·matplotlib
coldstarry7 分钟前
sheng的学习笔记-AI-adaboost(Adaptive Boosting)
人工智能·笔记·学习
KG_LLM图谱增强大模型7 分钟前
Graph-O1:基于蒙特卡洛树搜索与强化学习的文本属性图推理框架
人工智能·知识图谱
北京青翼科技7 分钟前
高速采集卡丨AD 采集丨 多通道数据采集卡丨高速数据采集系统丨青翼科技FMC 子卡
图像处理·人工智能·fpga开发·信号处理·智能硬件
轻轻唱9 分钟前
2026专业PPT设计服务商推荐:TOP10深度评测与选择指南
大数据·人工智能·算法
众趣科技11 分钟前
前馈神经网络入门:空间计算的三维重建魔法
人工智能·神经网络·空间计算
张人玉11 分钟前
VisionPro Blob、条码识别、OCR 核心学习笔记
人工智能·机器学习·计算机视觉·vsionpro
ws20190712 分钟前
AI重塑第三空间,AUTO TECH China 2026广州汽车智能座舱展解锁产业升级新密码
人工智能·科技·汽车
fanstuck14 分钟前
从 0 到 1 构建企业智能体平台:openJiuwen 架构解析与智能客服工作流实战
大数据·人工智能·算法·架构·aigc