pytorch-分类-检测-分割的dataset和dataloader创建

1.前言

在PyTorch中,DatasetDataLoader是两个重要的工具,用于构建输入数据的管道。

(1)Dataset是一个抽象类,表示数据集,需要实现__len____getitem__方法。

(2)DataLoader是一个可迭代的数据加载器,它封装了数据集的加载、批处理、打乱和并行加载等功能。

2.分类任务创建DatasetDataLoader

(1)对于分类任务,Dataset需要返回图像和对应的标签

python 复制代码
from torch.utils.data import Dataset  
from PIL import Image  
import os  
import torch  
  
class ClassificationDataset(Dataset):  
    def __init__(self, root_dir, transform=None):  
        self.transform = transform  
        self.images = [os.path.join(root_dir, img) for img in os.listdir(root_dir) if img.endswith('.jpg')]  
        self.labels = [...]  # 这里应该是与图像对应的标签列表  
  
    def __len__(self):  
        return len(self.images)  
  
    def __getitem__(self, idx):  
        img_path = self.images[idx]  
        image = Image.open(img_path).convert('RGB')  
        label = self.labels[idx]  
          
        if self.transform:  
            image = self.transform(image)  
          
        return image, label

(2)DataLoader加载数据

python 复制代码
from torch.utils.data import DataLoader  
  
transform = ...  # 这里定义你的数据预处理流程  
dataset = ClassificationDataset(root_dir='path_to_your_data', transform=transform)  
dataloader = DataLoader(dataset, batch_size=32, shuffle=True)

3.检测任务创建DatasetDataLoader

(1)Dataset需要返回图像和对应的边界框信息

python 复制代码
class DetectionDataset(Dataset):  
    def __init__(self, root_dir, transform=None):  
        self.transform = transform  
        self.images = [os.path.join(root_dir, img) for img in os.listdir(root_dir) if img.endswith('.jpg')]  
        self.annotations = [...]  # 这里应该是与图像对应的边界框信息列表  
  
    def __len__(self):  
        return len(self.images)  
  
    def __getitem__(self, idx):  
        img_path = self.images[idx]  
        image = Image.open(img_path).convert('RGB')  
        boxes = self.annotations[idx]  # 这些是边界框信息  
  
        if self.transform:  
            image, boxes = self.transform(image, boxes)  
          
        return image, boxes

(2)DataLoader加载数据

python 复制代码
dataloader = DataLoader(DetectionDataset(root_dir='path_to_your_data', transform=transform), batch_size=2, shuffle=True)

4.分割任务创建DatasetDataLoader

(1)Dataset需要返回图像和对应的分割掩码

python 复制代码
class SegmentationDataset(Dataset):  
    def __init__(self, root_dir, transform=None):  
        self.transform = transform  
        self.images = [os.path.join(root_dir, img) for img in os.listdir(root_dir) if img.endswith('.jpg')]  
        self.masks = [...]  # 这里应该是与图像对应的分割掩码列表  
  
    def __len__(self):  
        return len(self.images)  
  
    def __getitem__(self, idx):  
        img_path = self.images[idx]  
        mask_path = self.masks[idx]  
        image = Image.open(img_path).convert('RGB')  
        mask = Image.open(mask_path).convert('L')  # 假设掩码是灰度图  
  
        if self.transform:  
            image, mask = self.transform(image, mask)  
          
        return image, mask

(2)DataLoader加载数据

python 复制代码
dataloader = DataLoader(SegmentationDataset(root_dir='path_to_your_data', transform=transform), batch_size=4, shuffle=True)

在PyTorch的DatasetDataLoader框架中,idx(或称为索引)是通过迭代DataLoader时自动生成的。当你创建一个DataLoader实例,并在训练循环中迭代它时,DataLoader会内部调用Dataset__getitem__方法,并自动为你提供索引idx

相关推荐
心疼你的一切几秒前
自然语言处理_NLP与Transformer架构
人工智能·深度学习·目标检测·机器学习·计算机视觉·自然语言处理·transformer
望外追晚4 分钟前
mask_color_map.json丢失,导致分割标签.png无法导入X-Anylabeling的解决办法
人工智能·计算机视觉·json·paddlepaddle
沫儿笙7 分钟前
安川YASKAWA焊接机器人管材焊接节气
人工智能·机器人
五月君_9 分钟前
Node.js 企业级框架 Egg 4.0 发布:原生支持 AI 开发,架构全面革新
人工智能·架构·node.js
Java后端的Ai之路12 分钟前
【分析式AI】-机器学习的分类以及学派
人工智能·机器学习·分类·aigc·分析式ai
aini_lovee13 分钟前
使用BP神经网络进行故障数据分类的方法和MATLAB实现
神经网络·matlab·分类
飞哥数智坊13 分钟前
Cursor 可视化编辑器实测:前端效率新利器,但仍需完善
人工智能·ai编程·cursor
海棠AI实验室14 分钟前
从“会出图”到“能交付”:用 ChatGPT + Nano Banana/Midjourney 做一套现代高校图书馆方案
人工智能·chatgpt·midjourney·图书馆
Baihai_IDP16 分钟前
对长上下文能力有不同要求,怎么选择合适的模型?
人工智能·面试·llm
一只鹿鹿鹿17 分钟前
等级保护建设方案,等保2.0,等保3.0解决方案PPT文件和WORD文件
人工智能·学习·制造·规格说明书·软件系统