wsl ubuntu24.04 cuda13 cudnn9 pytorch 显卡加速

在WSL Ubuntu中部署CUDAToolkit cuDNN pytorch显卡加速

软件 版本
ubuntu 24.04
cuda-tookit 13.0
cudnn 9.15.0
pytorch 2.9.0+cu130
torchaudio 2.9.0+cu130
torchvision 2.9.0+cu130

在WSLUbuntu中部署Python3.12、CUDAToolkit和cuDNN的官方下载页面及步骤如下:

bash 复制代码
mkdir ~/cuda ~/cudnn

1.安装WindowsGPU驱动(WSL专用)

WSL2的GPU加速依赖Windows驱动,需下载NVIDIAWSL2专用驱动

官方下载页面NVIDIACUDAonWSLDownloads

选择适合你显卡型号的驱动版本(如471.21或更新),下载后直接在Windows中安装。

注意:安装驱动后需重启Windows,并确保WSL已升级到版本2。

2.安装CUDAToolkit(WSL专用)

NVIDIA提供针对WSL的CUDAToolkit安装包。

官方下载页面CUDAToolkit13forWSL

选择以下命令下载并安装

bash 复制代码
wget https://developer.download.nvidia.com/compute/cuda/repos/wsl-ubuntu/x86_64/cuda-keyring_1.1-1_all.deb -P ~/cuda
sudo dpkg -i ~/cuda/cuda-keyring_1.1-1_all.deb
sudo apt-get update
sudo apt-get -y install cuda-toolkit-13-0

安装完成后,配置环境变量

bash 复制代码
echo 'export PATH=/usr/local/cuda-13/bin:$PATH' >> ~/.bashrc
echo 'export LD_LIBRARY_PATH=/usr/local/cuda-13/lib64:$LD_LIBRARY_PATH' >> ~/.bashrc
source ~/.bashrc

验证安装

bash 复制代码
nvcc --version

3.安装cuDNN

cuDNN需与CUDAToolkit版本匹配,不推荐当独安装,在安装tpytorch的时候会自动安装匹配的版本。

-官方下载页面
NVIDIAcuDNNDownload

下载后执行以下命令安装:

bash 复制代码
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2404/x86_64/cuda-keyring_1.1-1_all.deb -P ~/cudnn
sudo dpkg -i ~/cudnn/cuda-keyring_1.1-1_all.deb
sudo apt-get update
sudo apt-get -y install cudnn-jit

-验证cudnn

bash 复制代码
ldconfig -p | grep libcudnn

4.安装Python3.12和PyTorch

  • 安装Python3.12相关工具(WSLUbuntu中默认可能未预装):

    bash 复制代码
    sudo apt update
    sudo apt -y install python3 python3-pip python3.12-venv
  • 创建虚拟环境

    bash 复制代码
    mkdir pytorch-code && cd pytorch-code
    python3 -m venv .venv
    source .venv/bin/activate
    python -m pip install --upgrade pip setuptools -i https://pypi.tuna.tsinghua.edu.cn/simple
  • 安装PyTorch(GPU版本)

    可通过官方 nightly 版本安装,命令示例:

    bash 复制代码
    pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu130
  • 验证PyTorch可调用CUDA和cuDNN

    python 复制代码
    import torch
    
    # 验证 CUDA 是否可用
    print("CUDA 可用性:", torch.cuda.is_available())
    
    # 验证 cuDNN 是否可用
    print("cuDNN 可用性:", torch.backends.cudnn.is_available())
    
    # 查看 CUDA 版本
    print("CUDA 版本:", torch.version.cuda)
    
    # 查看 cuDNN 版本
    print("cuDNN 版本(PyTorch 加载的版本):", torch.backends.cudnn.version())
    
    # 测试 GPU 张量运算
    if torch.cuda.is_available():
      # 在 GPU 上创建随机张量
      gpu_tensor = torch.randn(3, 3).cuda()
      print("GPU 张量示例:\n", gpu_tensor)
    
      # 执行简单运算并验证结果
      result = gpu_tensor + gpu_tensor
      print("GPU 运算结果:\n", result)
    else:
      print("未检测到可用 GPU,建议检查 CUDA 或 PyTorch 安装")
      

通过以上步骤,可在WSLUbuntu中完成Python3.12、CUDAToolkit和cuDNN的部署,并验证GPU加速功能。

相关推荐
聆风吟º5 小时前
CANN runtime 实战指南:异构计算场景中运行时组件的部署、调优与扩展技巧
人工智能·神经网络·cann·异构计算
寻星探路5 小时前
【深度长文】万字攻克网络原理:从 HTTP 报文解构到 HTTPS 终极加密逻辑
java·开发语言·网络·python·http·ai·https
Codebee7 小时前
能力中心 (Agent SkillCenter):开启AI技能管理新时代
人工智能
聆风吟º8 小时前
CANN runtime 全链路拆解:AI 异构计算运行时的任务管理与功能适配技术路径
人工智能·深度学习·神经网络·cann
uesowys8 小时前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
AI_56788 小时前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
User_芊芊君子8 小时前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
ValhallaCoder8 小时前
hot100-二叉树I
数据结构·python·算法·二叉树
ouliten8 小时前
cuda编程笔记(36)-- 应用Tensor Core加速矩阵乘法
笔记·cuda
智驱力人工智能8 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算