【DA-CLIP】test.py解读,调用DA-CLIP和IRSDE模型复原计算复原图与GT图SSIM、PSNR、LPIPS

文件路径daclip-uir-main/universal-image-restoration/config/daclip-sde/test.py

代码有部分修改

导包

python 复制代码
import argparse
import logging
import os.path
import sys
import time
from collections import OrderedDict
import torchvision.utils as tvutils

import numpy as np
import torch
from IPython import embed
import lpips

import options as option
from models import create_model

sys.path.insert(0, "../../")
import open_clip
import utils as util
from data import create_dataloader, create_dataset
from data.util import bgr2ycbcr

注意open_clip使用的是项目里的代码,而非环境里装的那个。data、util、option同样是项目里有的包

声明

python 复制代码
#### options
parser = argparse.ArgumentParser()
parser.add_argument("-opt", type=str, default='options/test.yml', help="Path to options YMAL file.")
opt = option.parse(parser.parse_args().opt, is_train=False)

opt = option.dict_to_nonedict(opt)

配置文件

设置配置文件相对地址options/test.yml

在该配置文件中配置GT和LQ图像文件地址

python 复制代码
datasets:
  test1:
   name: Test
   mode: LQGT
   dataroot_GT: C:\Users\86136\Desktop\LQ_test\shadow\GT
   dataroot_LQ: C:\Users\86136\Desktop\LQ_test\shadow\LQ

设置results_root结果地址,每次计算结束这个地址保存要求记录的计算结果

该目录下Test文件夹将保存一张GT一张LQ一张复原图像 。

不设置也会默认在项目内 daclip-uir-main\results\daclip-sde\universal-ir

python 复制代码
#### path
path:
  pretrain_model_G: E:\daclip\pretrained\universal-ir.pth
  daclip: E:\daclip\pretrained\daclip_ViT-B-32.pt
  results_root: C:\Users\86136\Desktop\daclip-uir-main\results\daclip-sde\universal-ir
  log: 
python 复制代码
#### mkdir and logger
util.mkdirs(
    (
        path
        for key, path in opt["path"].items()
        if not key == "experiments_root"
        and "pretrain_model" not in key
        and "resume" not in key
    )
)

# os.system("rm ./result")
# os.symlink(os.path.join(opt["path"]["results_root"], ".."), "./result")

报错执行代码没有删除再创建权限?我把相关os操作注释了,全部保存到result对我影响不大

加载创建数据对

python 复制代码
#### Create test dataset and dataloader
test_loaders = []
for phase, dataset_opt in sorted(opt["datasets"].items()):
    test_set = create_dataset(dataset_opt)
    test_loader = create_dataloader(test_set, dataset_opt)
    logger.info(
        "Number of test images in [{:s}]: {:d}".format(
            dataset_opt["name"], len(test_set)
        )
    )
    test_loaders.append(test_loader)

自定义包含复原IR-SDE模型的外层类model,参考app.py

python 复制代码
# load pretrained model by default
model = create_model(opt)
device = model.device

加载DA-CLIP、IR-SDE

python 复制代码
# clip_model, _preprocess = clip.load("ViT-B/32", device=device)
if opt['path']['daclip'] is not None:
    clip_model, preprocess = open_clip.create_model_from_pretrained('daclip_ViT-B-32', pretrained=opt['path']['daclip'])
else:
    clip_model, _, preprocess = open_clip.create_model_and_transforms('ViT-B-32', pretrained='laion2b_s34b_b79k')
tokenizer = open_clip.get_tokenizer('ViT-B-32')
clip_model = clip_model.to(device)

else是直接使用CLIP的ViT-B-32模型进行测试的代码。与我测DA-CLIP无关。

想使用的话 目测要预先下载对应模型权重并手动修改pretrained为文件地址,否则报错hf无法连接

Scala 复制代码
sde = util.IRSDE(max_sigma=opt["sde"]["max_sigma"], T=opt["sde"]["T"], schedule=opt["sde"]["schedule"], eps=opt["sde"]["eps"], device=device)
sde.set_model(model.model)
lpips_fn = lpips.LPIPS(net='alex').to(device)

scale = opt['degradation']['scale']

加载IR-SDE、LPIPS

如果不指定crop_border后续crop_border=scale

处理并计算

python 复制代码
for test_loader in test_loaders:
    test_set_name = test_loader.dataset.opt["name"]  # path opt['']
    logger.info("\nTesting [{:s}]...".format(test_set_name))
    test_start_time = time.time()
    dataset_dir = os.path.join(opt["path"]["results_root"], test_set_name)
    util.mkdir(dataset_dir)

    test_results = OrderedDict()
    test_results["psnr"] = []
    test_results["ssim"] = []
    test_results["psnr_y"] = []
    test_results["ssim_y"] = []
    test_results["lpips"] = []
    test_times = []

    for i, test_data in enumerate(test_loader):
        single_img_psnr = []
        single_img_ssim = []
        single_img_psnr_y = []
        single_img_ssim_y = []
        need_GT = False if test_loader.dataset.opt["dataroot_GT"] is None else True
        img_path = test_data["GT_path"][0] if need_GT else test_data["LQ_path"][0]
        img_name = os.path.splitext(os.path.basename(img_path))[0]

        #### input dataset_LQ
        LQ, GT = test_data["LQ"], test_data["GT"]
        img4clip = test_data["LQ_clip"].to(device)
        with torch.no_grad(), torch.cuda.amp.autocast():
            image_context, degra_context = clip_model.encode_image(img4clip, control=True)
            image_context = image_context.float()
            degra_context = degra_context.float()

        noisy_state = sde.noise_state(LQ)

        model.feed_data(noisy_state, LQ, GT, text_context=degra_context, image_context=image_context)
        tic = time.time()
        model.test(sde, save_states=False)
        toc = time.time()
        test_times.append(toc - tic)

        visuals = model.get_current_visuals()
        SR_img = visuals["Output"]
        output = util.tensor2img(SR_img.squeeze())  # uint8
        LQ_ = util.tensor2img(visuals["Input"].squeeze())  # uint8
        GT_ = util.tensor2img(visuals["GT"].squeeze())  # uint8
        
        suffix = opt["suffix"]
        if suffix:
            save_img_path = os.path.join(dataset_dir, img_name + suffix + ".png")
        else:
            save_img_path = os.path.join(dataset_dir, img_name + ".png")
        util.save_img(output, save_img_path)

        # remove it if you only want to save output images
        LQ_img_path = os.path.join(dataset_dir, img_name + "_LQ.png")
        GT_img_path = os.path.join(dataset_dir, img_name + "_HQ.png")
        util.save_img(LQ_, LQ_img_path)
        util.save_img(GT_, GT_img_path)

        if need_GT:
            gt_img = GT_ / 255.0
            sr_img = output / 255.0

            crop_border = opt["crop_border"] if opt["crop_border"] else scale
            if crop_border == 0:
                cropped_sr_img = sr_img
                cropped_gt_img = gt_img
            else:
                cropped_sr_img = sr_img[
                    crop_border:-crop_border, crop_border:-crop_border
                ]
                cropped_gt_img = gt_img[
                    crop_border:-crop_border, crop_border:-crop_border
                ]

            psnr = util.calculate_psnr(cropped_sr_img * 255, cropped_gt_img * 255)
            ssim = util.calculate_ssim(cropped_sr_img * 255, cropped_gt_img * 255)
            lp_score = lpips_fn(
                GT.to(device) * 2 - 1, SR_img.to(device) * 2 - 1).squeeze().item()

            test_results["psnr"].append(psnr)
            test_results["ssim"].append(ssim)
            test_results["lpips"].append(lp_score)

            if len(gt_img.shape) == 3:
                if gt_img.shape[2] == 3:  # RGB image
                    sr_img_y = bgr2ycbcr(sr_img, only_y=True)
                    gt_img_y = bgr2ycbcr(gt_img, only_y=True)
                    if crop_border == 0:
                        cropped_sr_img_y = sr_img_y
                        cropped_gt_img_y = gt_img_y
                    else:
                        cropped_sr_img_y = sr_img_y[
                            crop_border:-crop_border, crop_border:-crop_border
                        ]
                        cropped_gt_img_y = gt_img_y[
                            crop_border:-crop_border, crop_border:-crop_border
                        ]
                    psnr_y = util.calculate_psnr(
                        cropped_sr_img_y * 255, cropped_gt_img_y * 255
                    )
                    ssim_y = util.calculate_ssim(
                        cropped_sr_img_y * 255, cropped_gt_img_y * 255
                    )

                    test_results["psnr_y"].append(psnr_y)
                    test_results["ssim_y"].append(ssim_y)

                    logger.info(
                        "img{:3d}:{:15s} - PSNR: {:.6f} dB; SSIM: {:.6f}; LPIPS: {:.6f}; PSNR_Y: {:.6f} dB; SSIM_Y: {:.6f}.".format(
                            i, img_name, psnr, ssim, lp_score, psnr_y, ssim_y
                        )
                    )
            else:
                logger.info(
                    "img:{:15s} - PSNR: {:.6f} dB; SSIM: {:.6f}.".format(
                        img_name, psnr, ssim
                    )
                )

                test_results["psnr_y"].append(psnr)
                test_results["ssim_y"].append(ssim)
        else:
            logger.info(img_name)


    ave_lpips = sum(test_results["lpips"]) / len(test_results["lpips"])
    ave_psnr = sum(test_results["psnr"]) / len(test_results["psnr"])
    ave_ssim = sum(test_results["ssim"]) / len(test_results["ssim"])
    logger.info(
        "----Average PSNR/SSIM results for {}----\n\tPSNR: {:.6f} dB; SSIM: {:.6f}\n".format(
            test_set_name, ave_psnr, ave_ssim
        )
    )
    if test_results["psnr_y"] and test_results["ssim_y"]:
        ave_psnr_y = sum(test_results["psnr_y"]) / len(test_results["psnr_y"])
        ave_ssim_y = sum(test_results["ssim_y"]) / len(test_results["ssim_y"])
        logger.info(
            "----Y channel, average PSNR/SSIM----\n\tPSNR_Y: {:.6f} dB; SSIM_Y: {:.6f}\n".format(
                ave_psnr_y, ave_ssim_y
            )
        )

    logger.info(
            "----average LPIPS\t: {:.6f}\n".format(ave_lpips)
        )

    print(f"average test time: {np.mean(test_times):.4f}")

开头往log记录了相应配置文件内容,不需要可以注释。

遍历测试数据集(test_loaders)计算各种评价指标,如峰值信噪比(PSNR)、结构相似性(SSIM)和感知损失(LPIPS)。

在处理过程中,代码首先会创建一个目录来保存测试结果。

然后,对于每个测试图像,代码会加载对应的图像(如果可用),并使用一个名为clip_model的模型对图像进行编码。

接下来,代码会使用一个名为sde的随机微分方程模型和名为model的深度学习模型来处理带有噪声的图像,并生成复原图像(SR_img)。额可能作者拿了以前做超分的代码没改变量名

在这个过程中,text_contextimage_context被用作模型的输入,

图像都会被保存到之前创建的目录中。

此外,代码还会计算并记录每个图像的PSNR、SSIM和LPIPS分数,并在最后打印出这些分数的平均值。 代码中还包含了一些用于图像处理的实用函数,如util.tensor2img用于将张量转换为图像,util.save_img用于保存图像,以及util.calculate_psnrutil.calculate_ssim用于计算PSNR和SSIM分数。psnr_y和ssim_y 不用可以把相关代码注释。

最后,代码还计算了平均测试时间,并将其打印出来。

结果

log处理的单张图像报错的信息 0是该处理的图像排序序号,即正在处理第0张图

24-04-03 17:28:24.697 - INFO: img 0:_MG_2374_no_shadow - PSNR: 27.779773 dB; SSIM: 0.863140; LPIPS: 0.078669; PSNR_Y: 29.135256 dB; SSIM_Y: 0.869278.

可以给复原结果图加个后缀方便区分。

相关推荐
_.Switch15 分钟前
高级Python自动化运维:容器安全与网络策略的深度解析
运维·网络·python·安全·自动化·devops
AI极客菌1 小时前
Controlnet作者新作IC-light V2:基于FLUX训练,支持处理风格化图像,细节远高于SD1.5。
人工智能·计算机视觉·ai作画·stable diffusion·aigc·flux·人工智能作画
阿_旭1 小时前
一文读懂| 自注意力与交叉注意力机制在计算机视觉中作用与基本原理
人工智能·深度学习·计算机视觉·cross-attention·self-attention
王哈哈^_^1 小时前
【数据集】【YOLO】【目标检测】交通事故识别数据集 8939 张,YOLO道路事故目标检测实战训练教程!
前端·人工智能·深度学习·yolo·目标检测·计算机视觉·pyqt
测开小菜鸟1 小时前
使用python向钉钉群聊发送消息
java·python·钉钉
Power20246662 小时前
NLP论文速读|LongReward:基于AI反馈来提升长上下文大语言模型
人工智能·深度学习·机器学习·自然语言处理·nlp
数据猎手小k2 小时前
AIDOVECL数据集:包含超过15000张AI生成的车辆图像数据集,目的解决旨在解决眼水平分类和定位问题。
人工智能·分类·数据挖掘
好奇龙猫2 小时前
【学习AI-相关路程-mnist手写数字分类-win-硬件:windows-自我学习AI-实验步骤-全连接神经网络(BPnetwork)-操作流程(3) 】
人工智能·算法
沉下心来学鲁班2 小时前
复现LLM:带你从零认识语言模型
人工智能·语言模型
数据猎手小k2 小时前
AndroidLab:一个系统化的Android代理框架,包含操作环境和可复现的基准测试,支持大型语言模型和多模态模型。
android·人工智能·机器学习·语言模型