搜索与图论——拓扑排序

有向图的拓扑排序就是图的宽度优先遍历的一个应用

有向无环图一定存在拓扑序列(有向无环图又被称为拓扑图),有向有环图一定不存在拓扑序列。无向图没有拓扑序列。

拓扑序列:将一个图排成拓扑序后,所有的边都是从前指向后的。

入度:有多少条边指向自己

出度:有多少条边指向别人

入度为0的点都可以排在最前边

cpp 复制代码
#include<iostream>
#include<cstring>

using namespace std;

const int N = 100010;

int n, m;
int h[N], e[N], ne[N], idx;
int q[N];
int d[N]; //入度

void add(int a, int b)
{
    e[idx] = b, ne[idx] = h[a]; h[a] = idx ++ ;
}

bool topsort()
{
    int hh = 0, tt = -1;
    for(int i = 1; i <= n; i ++ )
    {
        if(!d[i]) q[ ++ tt] = i; \\入度为零的点推入队列
    }
    while(hh <= tt)
    {
        int t = q[hh ++ ];
        for(int i = h[t]; i != -1; i = ne[i])
        {
            int j = e[i]; //枚举t的所有出边j
            d[j] -- ; /删掉t -> j边,j的入度--
            if(d[j] == 0) q[ ++ tt] = j; //如果j的入度==0,推入队列
        }
    }
    return tt == n - 1; //如果队尾 == n - 1说明所有点都进过队列了,说明该图是一个有向无环图
}

int main()
{
    cin >> n >> m;
    memset(h, -1, sizeof h);
    while(m -- )
    {
        int a, b;
        cin >> a >> b;
        add(a, b);
        d[b] ++ ;
    }
    if(topsort())
    {
        for(int i = 0; i < n; i ++ ) cout << q[i] << " ";
    }
    else cout << -1 << endl;
    return 0;
}
相关推荐
EXtreme351 分钟前
栈(Stack)的约束之美:LIFO哲思、实现剖析与算法应用全景深度解析
数据结构·算法··共享栈·链栈·lifo·表达式求值
wusam3 分钟前
计算机网络传输层应用层综合实验4:架设ftp网站
服务器·网络·计算机网络·应用层服务
老蒋新思维4 分钟前
创客匠人峰会实录:智能体系统重构知识变现 —— 从 “工具应用” 到 “场景化生态” 的跃迁
大数据·网络·人工智能·tcp/ip·重构·创始人ip·创客匠人
wefg18 分钟前
【算法】深度优先遍历/搜索(递归、回溯、剪枝)
算法
月亮!9 分钟前
当技术中立性遇上算法偏见:软件测试者的伦理启示
网络·人工智能·python·测试工具·算法·安全·开源
是宇写的啊11 分钟前
算法-位运算
算法
Black蜡笔小新12 分钟前
GB28181设备接入EasyCVR视频汇聚平台视频流异常的原因排查
网络·音视频
老蒋新思维12 分钟前
创客匠人峰会深度:AI 重构知识产品 —— 从 “标准化” 到 “个性化 + 规模化” 的变现革命
大数据·网络·人工智能·tcp/ip·重构·创始人ip·创客匠人
老蒋新思维12 分钟前
创客匠人峰会深度:AI+IP 重构知识变现信任链路 —— 创始人 IP 的信任增长方法论
大数据·网络·人工智能·tcp/ip·重构·创始人ip·创客匠人
周杰伦_Jay14 分钟前
【Nacos指南】服务发现+配置管理从入门到实战
网络·架构·开源·云计算·服务发现