Pandas Dataframe合并连接Join和merge 参数讲解

文章目录

函数与参数分析

在pandas中主要有两个函数可以完成table之间的join

Join的函数如下:

DataFrame.join(other, on=None, how='left', lsuffix='', rsuffix='', sort=False, validate=None)

merge的函数如下:

DataFrame.merge(right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=False, suffixes=('_x', '_y'), copy=None, indicator=False, validate=None)

下面会对于参数进行分别的解释。而通过可以调试的参数和

other

other是另外一个DataFrame或者Series,说明了join的两个表为DataFrame和other

on

on表示根据什么键进行连接,这个键可以是一个或者多个。如果这个连接的键在两个表中都存在就直接写就好,如果是一个就写一个String,多个就用list。

其中merge是需要给键值的。join默认的是使用索引的值。

如果不存在的话,那么则可以规定left_on和right_on。但是这个时候只能用merge, join是不支持这一点的。(merge的代码如下)

python 复制代码
result = df1.merge(df2, left_on='key1', right_on='key2')

但是如果是连接多个键的名字都不同的时候,(比如df1.key1 == df2.key2 , df1.key3 == df2.key4) 那么则最好先通过rename的函数对Dataframe进行改名,之后再merge。

how

how表示的是连接的方式,一般包含下面的参数,默认是左连接

join:

how{'left', 'right', 'outer', 'inner', 'cross'}, default 'left'

merge:

how{'left', 'right', 'outer', 'inner', 'cross'}, default 'inner'

这里可以看见两者默认的连接方式是不同的

不同的连接方式如下:

当使用cross的时候不需要指定on啥,因为会把左右连接的所有的可能都返回,并不在乎谁和谁相等。

lsuffix, rsuffix, suffixes

如果有非连接key出现同名的情况,可以用此参数来规定区别两个列分别来自于哪个表。

left_index, right_index

这个是merge中的参数,当设置为True的时候,意思是使用索引进行连接。

相关推荐
江上月5131 天前
Pandas 高级教程:解锁数据分析的强大潜能
数据挖掘·数据分析·pandas
AI小云4 天前
【数据操作与可视化】Pandas数据处理-其他操作
python·pandas
飞梦工作室9 天前
突破 pandas 瓶颈:实时读写 Excel 与超透视汇总函数的双维解决方案
python·excel·pandas
Python大数据分析@9 天前
Vaex :突破pandas,快速分析100G大数据量
pandas
AI小云9 天前
【数据操作与可视化】Pandas数据处理-Series数据结构
开发语言·数据结构·python·numpy·pandas
小兔崽子去哪了11 天前
Numpy、Panads
python·numpy·pandas
一晌小贪欢12 天前
Pandas操作Excel使用手册大全:从基础到精通
开发语言·python·自动化·excel·pandas·办公自动化·python办公
CodeLongBear14 天前
Python数据分析 -- Pandas基础入门学习笔记:从核心概念到实操代码
python·conda·pandas
njxiejing15 天前
Python pandas基础:Series数据操作详解
数据结构·pandas