Spark, Storm, Flink简介

目录

  • [1.Spark VS Storm](#1.Spark VS Storm)
  • [2.Storm VS Flink](#2.Storm VS Flink)

本文主要介绍Spark, Storm, Flink的区别。

1.Spark VS Storm

Spark和Storm都是大数据处理框架,但它们在设计理念和使用场景上有一些区别:

  1. 实时性:Storm是一个实时计算框架,适合需要实时处理的场景;而Spark是一个批处理框架,虽然其提供的Spark Streaming模块可以进行近实时处理,但其本质上还是基于微批处理的方式,相比Storm在实时性上稍有不足。
  2. 易用性:Spark提供了更高级的API,如DataFrame和DataSet,使得开发人员可以更容易地进行开发;而Storm的API相对较低级,使用起来可能会比较复杂。
  3. 数据处理模型:Storm采用的是基于Tuple的流式数据处理模型,适合处理无限的数据流;而Spark采用的是基于RDD的批处理数据模型,适合处理有限的数据集。
  4. 容错性:Spark通过RDD的不可变性和Lineage信息提供了较强的容错性;而Storm通过消息重发机制来保证数据的可靠性,但在大数据量下可能会出现性能瓶颈。
  5. 计算能力:Spark支持更丰富的计算模型,如批处理、交互式查询、流处理和机器学习等;而Storm主要用于实时计算和流处理。
  6. 社区活跃度:Spark的社区活跃度较高,更新迭代速度快,使用者多;而Storm的社区相对较小,更新迭代速度慢。

Storm和Flink都是流处理框架,但在设计理念和使用场景上有一些区别:

  1. 实时性:Storm支持实时流处理,适合需要实时处理的场景;而Flink不仅支持实时流处理,还支持批处理,且在实时处理上,Flink支持事件时间(Event Time)和处理时间(Processing Time)的区分,更适合处理有时间语义的复杂事件。
  2. 计算模型:Storm采用的是基于Tuple的流式数据处理模型,适合处理无限的数据流;而Flink提供了一种统一的计算模型,可以同时处理批数据和流数据。
  3. 容错性:Storm通过消息重发机制来保证数据的可靠性,但在大数据量下可能会出现性能瓶颈;而Flink通过Checkpoint机制提供了精确一次(exactly-once)的处理语义,容错性更强。
  4. API和易用性:Storm的API相对较低级,使用起来可能会比较复杂;而Flink的API设计更加友好,提供了更灵活的窗口操作和时间处理机制。
  5. 社区活跃度:Storm的社区相对较小,更新迭代速度慢;而Flink的社区近年来发展较快,逐渐受到关注。
相关推荐
TDengine (老段)1 小时前
TDengine 集群部署及启动、扩容、缩容常见问题与解决方案
大数据·数据库·物联网·时序数据库·iot·tdengine·涛思数据
青云交4 小时前
Java 大视界 -- Java 大数据机器学习模型在电商用户复购行为预测与客户关系维护中的应用(343)
java·大数据·机器学习·数据安全·电商复购·地域适配·边疆电商
贝塔西塔4 小时前
PySpark中python环境打包和JAR包依赖
大数据·开发语言·python·spark·jar·pyspark
保持学习ing4 小时前
day4--上传图片、视频
java·大数据·数据库·文件上传·minio·分布式文件系统·文件存储
加百力5 小时前
AI基建还能投多久?高盛:2-3年不是问题,回报窗口才刚开启
大数据·人工智能
Web3_Daisy7 小时前
想要抢早期筹码?FourMeme专区批量交易教学
大数据·人工智能·区块链·比特币
GeminiJM12 小时前
Elasticsearch混合搜索深度解析(上):问题发现与源码探索
大数据·elasticsearch·jenkins
桂成林14 小时前
基于Flink 1.20、StarRocks与TiCDC构建高效数据处理链路教程
大数据·flink
Leo.yuan14 小时前
数据清洗(ETL/ELT)原理与工具选择指南:企业数字化转型的核心引擎
大数据·数据仓库·数据挖掘·数据分析·etl
UI前端开发工作室15 小时前
数字孪生技术为UI前端提供新视角:产品性能的实时模拟与预测
大数据·前端