Pytorch实用教程:torch.from_numpy(X_train)和torch.from_numpy(X_train).float()的区别

在PyTorch中,torch.from_numpy()函数和.float()方法被用来从NumPy数组创建张量,并可能改变张量的数据类型。两者之间的区别主要体现在数据类型的转换上:

  1. torch.from_numpy(X_train) :这行代码将NumPy数组X_train转换为一个PyTorch张量,保留了原始NumPy数组的数据类型。

    如果X_train是一个64位浮点数组(即dtype=np.float64),则转换后的PyTorch张量也将具有相同的数据类型torch.float64

    同样,如果原始NumPy数组是整数类型(比如np.int32),转换后的张量也会保持这个数据类型(比如torch.int32)。

  2. torch.from_numpy(X_train).float() :这行代码首先将NumPy数组X_train转换为一个PyTorch张量,然后通过.float()方法将张量的数据类型转换为torch.float32

    不管原始NumPy数组的数据类型是什么,应用.float()之后,得到的PyTorch张量都将是单精度浮点数类型。

简单来说,不加.float()的版本保留了NumPy数组的原始数据类型,而加上.float()的版本将数据类型统一转换为了torch.float32

这个转换在深度学习中很常见,因为大多数神经网络操作都使用单精度浮点数进行计算,这样既可以节省内存空间,也可以加快计算速度,尤其是在GPU上执行时。

相关推荐
富唯智能2 分钟前
智慧物流新篇章:复合机器人重塑装配车间物料配送
人工智能·工业机器人·复合机器人
递归不收敛19 分钟前
四、高效注意力机制与模型架构
人工智能·笔记·自然语言处理·架构
扫地的小何尚22 分钟前
AI创新的火花:NVIDIA DGX Spark开箱与深度解析
大数据·人工智能·spark·llm·gpu·nvidia·dgx
AI科技星35 分钟前
接近光速运动下的光速不变性:基于张祥前统一场论的推导与验证
数据结构·人工智能·经验分享·算法·计算机视觉
864记忆1 小时前
opencv图像预处理函数的功能与作用
人工智能·opencv·计算机视觉
神仙别闹1 小时前
基于C#实现(WinForm)数值分析(图像扭曲变形)
人工智能
光影少年2 小时前
AIGG人工智能生态及学习路线和应用领域
人工智能·学习
俊男无期2 小时前
【AI入门】什么是训练和推理
人工智能
递归不收敛2 小时前
多模态学习大纲笔记(未完成)
人工智能·笔记·学习·自然语言处理