Pytorch实用教程:torch.from_numpy(X_train)和torch.from_numpy(X_train).float()的区别

在PyTorch中,torch.from_numpy()函数和.float()方法被用来从NumPy数组创建张量,并可能改变张量的数据类型。两者之间的区别主要体现在数据类型的转换上:

  1. torch.from_numpy(X_train) :这行代码将NumPy数组X_train转换为一个PyTorch张量,保留了原始NumPy数组的数据类型。

    如果X_train是一个64位浮点数组(即dtype=np.float64),则转换后的PyTorch张量也将具有相同的数据类型torch.float64

    同样,如果原始NumPy数组是整数类型(比如np.int32),转换后的张量也会保持这个数据类型(比如torch.int32)。

  2. torch.from_numpy(X_train).float() :这行代码首先将NumPy数组X_train转换为一个PyTorch张量,然后通过.float()方法将张量的数据类型转换为torch.float32

    不管原始NumPy数组的数据类型是什么,应用.float()之后,得到的PyTorch张量都将是单精度浮点数类型。

简单来说,不加.float()的版本保留了NumPy数组的原始数据类型,而加上.float()的版本将数据类型统一转换为了torch.float32

这个转换在深度学习中很常见,因为大多数神经网络操作都使用单精度浮点数进行计算,这样既可以节省内存空间,也可以加快计算速度,尤其是在GPU上执行时。

相关推荐
GEO科技权威资讯15 分钟前
生成对抗网络 (GAN):理解其原理与创作能力
人工智能·神经网络·生成对抗网络
六月的可乐1 小时前
【干货推荐】AI助理前端UI组件-悬浮球组件
前端·人工智能·ui
蔡俊锋1 小时前
【无标题】
人工智能·chatgpt
说私域1 小时前
基于开源AI大模型AI智能名片S2B2C商城小程序的参与感构建研究
人工智能·小程序·开源
码蛊仙尊1 小时前
2025计算机视觉新技术
人工智能·计算机视觉
星空的资源小屋1 小时前
网易UU远程,免费电脑远程控制软件
人工智能·python·pdf·电脑
IMER SIMPLE2 小时前
人工智能-python-深度学习-神经网络-MobileNet V1&V2
人工智能·python·深度学习
njxiejing2 小时前
Pandas数据结构(DataFrame,字典赋值)
数据结构·人工智能·pandas
盼小辉丶2 小时前
TensorFlow深度学习实战(37)——深度学习的数学原理
人工智能·深度学习·tensorflow
GEO_YScsn2 小时前
计算机视觉 (CV) 基础:图像处理、特征提取与识别
图像处理·人工智能·计算机视觉