深度学习:神经网络模型的剪枝和压缩简述

深度学习的神经网路的剪枝和压缩,大致的简述,

主要采用: network slimming,瘦身网络...

深度学习网络,压缩的主要方式:

1.剪枝,nerwork pruing,

2.稀疏表示,sparse representation, 本是正态分布的,存在稀疏参数0.001等等,将接近0的缩放因子,全部摘除,

3.量化,bit precision, 低精度表示,不用浮点数,用整数,如int8、更少的bit,甚至20毫,

4.知识蒸馏,knowledge distillation,

神经网络,往往过度参数化,会对结果造成干扰和负担,所以要将他减掉,

剪枝技术介绍:

1.权重pt剪枝: 摘掉几个中间的权重,非结构化,不利于部署, 实现困难,硬件gpu也不支持,

2.神经元剪枝: 摘掉几个中间的神经元,不重要的通道,影响较小,可有可无,

network sliming,瘦身网络... 比较经典的网络剪枝方法。

原理: 不同的卷积层 ---->>> 通道缩放因子---->>> 新的卷积层。

网络初始化层中:(结构化的剪枝方法) (流程简述)

缩放因子,稀疏正则化,剪枝,微调

1.缩放因子: 参数比例,存在极小比例的缩放因子,如0.001等等,

2.稀疏正则化: 对缩放因子,进行稀疏正则化,可以自动识别不重要的通道,

3.剪枝: 具有较小缩放因子的通道将被剪枝,

4.微调: 剪枝后的紧凑模型(compact network),会精度下降,

需要微调达到正常训练网络的恢复,甚至超越!!!

网络瘦身-流程图:

初始化网络-> 通道:稀疏正则化训练 -> 剪除:小缩放因子通道 -> 微调: 剪枝后网络 -> 紧凑模型(compact network)

在, 初始化网络->紧凑模型(compact network) 之间多次,不断重复流程,迭代多次。

对于跨层链接:

正则化和预激活正则化来说,如resnet等架构,他们存在跳过的支路,BN在剪枝之前

剪完后,容易出现通道不匹配现象,不能直接相加,

必须采用: channel selection,与未被剪枝的后续通道相加,相当于多了一条连接线,

windows输入特殊符号: win+r,召唤出cmd命令行, 按下charmap,跳出特殊字符表。。。

不同的稀疏正则化,随着缩放因子λ的增大,而越来越稀疏。

但是,缩放因子λ太大会导致精度变差,后续的微调fine-tuning变难。

相关推荐
学好statistics和DS3 分钟前
【CV】神经网络中哪些参数需要被学习?
人工智能·神经网络·学习
姜—姜6 分钟前
通过构建神经网络实现项目预测
人工智能·pytorch·深度学习·神经网络
麦麦大数据7 小时前
F024 RNN+Vue+Flask电影推荐可视化系统 python flask mysql 深度学习 echarts
python·rnn·深度学习·vue·echarts·电影推荐
诸葛箫声7 小时前
十类图片深度学习提升准确率(0.9317)
人工智能·深度学习
HyperAI超神经7 小时前
AI预判等离子体「暴走」,MIT等基于机器学习实现小样本下的等离子体动力学高精度预测
人工智能·神经网络·机器学习·ai·强化学习·可控核聚变·托卡马克
wan5555cn8 小时前
当代社会情绪分类及其改善方向深度解析
大数据·人工智能·笔记·深度学习·算法·生活
nju_spy8 小时前
华为AI岗 -- 笔试(一)
人工智能·深度学习·机器学习·华为·笔试·dbscan·掩码多头自注意力
初学小刘9 小时前
深度学习在目标检测中的应用与挑战
人工智能·深度学习·目标检测
MYX_30910 小时前
第四章 神经网络的基本组件
pytorch·深度学习·神经网络·学习
OpenBayes10 小时前
教程上新|重新定义下一代 OCR:IBM 最新开源 Granite-docling-258M,实现端到端的「结构+内容」统一理解
人工智能·深度学习·机器学习·自然语言处理·ocr·图像识别·文档处理