深度学习:神经网络模型的剪枝和压缩简述

深度学习的神经网路的剪枝和压缩,大致的简述,

主要采用: network slimming,瘦身网络...

深度学习网络,压缩的主要方式:

1.剪枝,nerwork pruing,

2.稀疏表示,sparse representation, 本是正态分布的,存在稀疏参数0.001等等,将接近0的缩放因子,全部摘除,

3.量化,bit precision, 低精度表示,不用浮点数,用整数,如int8、更少的bit,甚至20毫,

4.知识蒸馏,knowledge distillation,

神经网络,往往过度参数化,会对结果造成干扰和负担,所以要将他减掉,

剪枝技术介绍:

1.权重pt剪枝: 摘掉几个中间的权重,非结构化,不利于部署, 实现困难,硬件gpu也不支持,

2.神经元剪枝: 摘掉几个中间的神经元,不重要的通道,影响较小,可有可无,

network sliming,瘦身网络... 比较经典的网络剪枝方法。

原理: 不同的卷积层 ---->>> 通道缩放因子---->>> 新的卷积层。

网络初始化层中:(结构化的剪枝方法) (流程简述)

缩放因子,稀疏正则化,剪枝,微调

1.缩放因子: 参数比例,存在极小比例的缩放因子,如0.001等等,

2.稀疏正则化: 对缩放因子,进行稀疏正则化,可以自动识别不重要的通道,

3.剪枝: 具有较小缩放因子的通道将被剪枝,

4.微调: 剪枝后的紧凑模型(compact network),会精度下降,

需要微调达到正常训练网络的恢复,甚至超越!!!

网络瘦身-流程图:

初始化网络-> 通道:稀疏正则化训练 -> 剪除:小缩放因子通道 -> 微调: 剪枝后网络 -> 紧凑模型(compact network)

在, 初始化网络->紧凑模型(compact network) 之间多次,不断重复流程,迭代多次。

对于跨层链接:

正则化和预激活正则化来说,如resnet等架构,他们存在跳过的支路,BN在剪枝之前

剪完后,容易出现通道不匹配现象,不能直接相加,

必须采用: channel selection,与未被剪枝的后续通道相加,相当于多了一条连接线,

windows输入特殊符号: win+r,召唤出cmd命令行, 按下charmap,跳出特殊字符表。。。

不同的稀疏正则化,随着缩放因子λ的增大,而越来越稀疏。

但是,缩放因子λ太大会导致精度变差,后续的微调fine-tuning变难。

相关推荐
武子康26 分钟前
AI研究-129 Qwen2.5-Omni-7B 要点:显存、上下文、并发与成本
人工智能·深度学习·机器学习·ai·大模型·qwen·全模态
CoovallyAIHub39 分钟前
基于SimCLR的自监督 YOLO:YOLOv5/8也能在低标注场景目标检测性能飙升
深度学习·算法·计算机视觉
S***t7141 小时前
深度学习迁移学习应用
人工智能·深度学习·迁移学习
1白天的黑夜12 小时前
递归-二叉树中的剪枝-814.二叉树剪枝-力扣(LeetCode)
c++·leetcode·剪枝·递归
晨非辰4 小时前
【数据结构初阶系列】归并排序全透视:从算法原理全分析到源码实战应用
运维·c语言·数据结构·c++·人工智能·python·深度学习
这张生成的图像能检测吗10 小时前
(论文速读)WFF-Net:用于表面缺陷检测的可训练权重特征融合卷积神经网络
人工智能·深度学习·神经网络·缺陷检测·图像分割
jz_ddk10 小时前
[算法] 算法PK:LMS与RLS的对比研究
人工智能·神经网络·算法·信号处理·lms·rls·自适应滤波
jay神10 小时前
【原创】基于YOLO模型的手势识别系统
深度学习·yolo·计算机·毕业设计·软件设计与开发
今天吃饺子11 小时前
如何用MATLAB调用python实现深度学习?
开发语言·人工智能·python·深度学习·matlab
未若君雅裁11 小时前
LeetCode 51 - N皇后问题 详解笔记
java·数据结构·笔记·算法·leetcode·剪枝