深度学习:神经网络模型的剪枝和压缩简述

深度学习的神经网路的剪枝和压缩,大致的简述,

主要采用: network slimming,瘦身网络...

深度学习网络,压缩的主要方式:

1.剪枝,nerwork pruing,

2.稀疏表示,sparse representation, 本是正态分布的,存在稀疏参数0.001等等,将接近0的缩放因子,全部摘除,

3.量化,bit precision, 低精度表示,不用浮点数,用整数,如int8、更少的bit,甚至20毫,

4.知识蒸馏,knowledge distillation,

神经网络,往往过度参数化,会对结果造成干扰和负担,所以要将他减掉,

剪枝技术介绍:

1.权重pt剪枝: 摘掉几个中间的权重,非结构化,不利于部署, 实现困难,硬件gpu也不支持,

2.神经元剪枝: 摘掉几个中间的神经元,不重要的通道,影响较小,可有可无,

network sliming,瘦身网络... 比较经典的网络剪枝方法。

原理: 不同的卷积层 ---->>> 通道缩放因子---->>> 新的卷积层。

网络初始化层中:(结构化的剪枝方法) (流程简述)

缩放因子,稀疏正则化,剪枝,微调

1.缩放因子: 参数比例,存在极小比例的缩放因子,如0.001等等,

2.稀疏正则化: 对缩放因子,进行稀疏正则化,可以自动识别不重要的通道,

3.剪枝: 具有较小缩放因子的通道将被剪枝,

4.微调: 剪枝后的紧凑模型(compact network),会精度下降,

需要微调达到正常训练网络的恢复,甚至超越!!!

网络瘦身-流程图:

初始化网络-> 通道:稀疏正则化训练 -> 剪除:小缩放因子通道 -> 微调: 剪枝后网络 -> 紧凑模型(compact network)

在, 初始化网络->紧凑模型(compact network) 之间多次,不断重复流程,迭代多次。

对于跨层链接:

正则化和预激活正则化来说,如resnet等架构,他们存在跳过的支路,BN在剪枝之前

剪完后,容易出现通道不匹配现象,不能直接相加,

必须采用: channel selection,与未被剪枝的后续通道相加,相当于多了一条连接线,

windows输入特殊符号: win+r,召唤出cmd命令行, 按下charmap,跳出特殊字符表。。。

不同的稀疏正则化,随着缩放因子λ的增大,而越来越稀疏。

但是,缩放因子λ太大会导致精度变差,后续的微调fine-tuning变难。

相关推荐
2301_800256111 小时前
【人工智能引论期末复习】 第6章 深度学习4 - RNN
人工智能·rnn·深度学习
徐先生 @_@|||1 小时前
Palantir Foundry 五层架构模型详解
开发语言·python·深度学习·算法·机器学习·架构
翱翔的苍鹰2 小时前
神经网络中损失函数(Loss Function)介绍
人工智能·深度学习·神经网络
元智启2 小时前
企业AI应用面临“敏捷响应”难题:快速变化的业务与相对滞后的智能如何同步?
人工智能·深度学习·机器学习
Hcoco_me3 小时前
大模型面试题63:介绍一下RLHF
人工智能·深度学习·机器学习·chatgpt·机器人
向量引擎小橙4 小时前
“2026数据枯竭”警报拉响:合成数据如何成为驱动AI进化的“新石油”?
大数据·人工智能·深度学习·集成学习
努力犯错4 小时前
Qwen Image Layered:革命性的AI图像生成与图层分解技术
人工智能·深度学习·计算机视觉
高洁016 小时前
AI智能体搭建(3)
人工智能·深度学习·算法·数据挖掘·知识图谱
Coovally AI模型快速验证7 小时前
仅192万参数的目标检测模型,Micro-YOLO如何做到目标检测精度与效率兼得
人工智能·神经网络·yolo·目标检测·计算机视觉·目标跟踪·自然语言处理
Hcoco_me8 小时前
大模型面试题71: DPO有什么缺点?后续对DPO算法有哪些改进?
人工智能·深度学习·算法·自然语言处理·transformer·vllm