梯度:般在神经网络里面是一个batch清空一次梯度还是一个epoch清空一次梯度?

通常,在神经网络训练中,是在每个 mini-batch 处理完成后清空一次梯度,而不是在每个 epoch 结束后清空一次梯度。

这是因为在每个 mini-batch 中,模型参数的梯度是根据当前 mini-batch 的损失计算得到的,如果不在每个 mini-batch 后清空梯度,梯度会在每个 mini-batch 中累积,导致参数更新不准确。

因此,通常的做法是在每个 mini-batch 处理完成后调用优化器的 .zero_grad() 方法来清空梯度,以便接收下一个 mini-batch 的梯度信息。

在训练过程中,一个 epoch 包含多个 mini-batches,完成一个 epoch 后,模型会遍历整个训练数据集一次。在每个 epoch 开始时,一般会打乱数据集的顺序以增加模型的泛化能力。

.zero_grad()方法

.zero_grad() 是优化器对象的方法,用于将所有参数的梯度清零。

在每次进行反向传播之前,通常会调用 .zero_grad() 方法来清空之前累积的梯度信息,以准备接收新一轮的梯度信息。这样做可以确保每次参数更新只基于当前批次的梯度,而不受之前批次梯度的影响。

相关推荐
飞哥数智坊7 小时前
GPT-5-Codex 发布,Codex 正在取代 Claude
人工智能·ai编程
倔强青铜三7 小时前
苦练Python第46天:文件写入与上下文管理器
人工智能·python·面试
虫无涯8 小时前
Dify Agent + AntV 实战:从 0 到 1 打造数据可视化解决方案
人工智能
Dm_dotnet10 小时前
公益站Agent Router注册送200刀额度竟然是真的
人工智能
算家计算10 小时前
7B参数拿下30个世界第一!Hunyuan-MT-7B本地部署教程:腾讯混元开源业界首个翻译集成模型
人工智能·开源
机器之心11 小时前
LLM开源2.0大洗牌:60个出局,39个上桌,AI Coding疯魔,TensorFlow已死
人工智能·openai
Juchecar12 小时前
交叉熵:深度学习中最常用的损失函数
人工智能
林木森ai12 小时前
爆款AI动物运动会视频,用Coze(扣子)一键搞定全流程(附保姆级拆解)
人工智能·aigc
聚客AI12 小时前
🙋‍♀️Transformer训练与推理全流程:从输入处理到输出生成
人工智能·算法·llm
BeerBear14 小时前
【保姆级教程-从0开始开发MCP服务器】一、MCP学习压根没有你想象得那么难!.md
人工智能·mcp