梯度:般在神经网络里面是一个batch清空一次梯度还是一个epoch清空一次梯度?

通常,在神经网络训练中,是在每个 mini-batch 处理完成后清空一次梯度,而不是在每个 epoch 结束后清空一次梯度。

这是因为在每个 mini-batch 中,模型参数的梯度是根据当前 mini-batch 的损失计算得到的,如果不在每个 mini-batch 后清空梯度,梯度会在每个 mini-batch 中累积,导致参数更新不准确。

因此,通常的做法是在每个 mini-batch 处理完成后调用优化器的 .zero_grad() 方法来清空梯度,以便接收下一个 mini-batch 的梯度信息。

在训练过程中,一个 epoch 包含多个 mini-batches,完成一个 epoch 后,模型会遍历整个训练数据集一次。在每个 epoch 开始时,一般会打乱数据集的顺序以增加模型的泛化能力。

.zero_grad()方法

.zero_grad() 是优化器对象的方法,用于将所有参数的梯度清零。

在每次进行反向传播之前,通常会调用 .zero_grad() 方法来清空之前累积的梯度信息,以准备接收新一轮的梯度信息。这样做可以确保每次参数更新只基于当前批次的梯度,而不受之前批次梯度的影响。

相关推荐
CoderJia程序员甲1 分钟前
GitHub 热榜项目 - 日榜(2026-02-18)
人工智能·ai·大模型·github·ai教程
阿坡RPA1 分钟前
OpenClaw多Agent协作踩坑实录:从翻车到跑通的全记录
人工智能·aigc
Kiyra8 分钟前
云端编排与算力解构:2026 春晚亿级 AI 互动背后的极致弹性架构
人工智能·架构
啊阿狸不会拉杆10 分钟前
《计算机视觉:模型、学习和推理》第 4 章-拟合概率模型
人工智能·python·学习·算法·机器学习·计算机视觉·拟合概率模型
Katecat9966312 分钟前
基于sparse-rcnn_r50_fpn的冰球目标检测与识别系统改进与部署
人工智能·目标检测·计算机视觉
Katecat9966312 分钟前
基于深度学习的虹膜识别与分类系统,结合tood_r50_fpn_anchor-based_1x_coco模型实现
人工智能·深度学习·分类
枕石 入梦14 分钟前
Java 手写 AI Agent:ZenoAgent 实战笔记
人工智能·开源·agent·zenoagent
陈天伟教授19 分钟前
人工智能应用- 人工智能交叉:06.解析蛋白质宇宙
人工智能·神经网络·算法·机器学习·推荐算法
hudawei99628 分钟前
和豆包AI对话-什么是人类的理解
人工智能·人类的理解·人工智能的理解
BatmanWayne31 分钟前
swift-微调补充
人工智能·swift