梯度:般在神经网络里面是一个batch清空一次梯度还是一个epoch清空一次梯度?

通常,在神经网络训练中,是在每个 mini-batch 处理完成后清空一次梯度,而不是在每个 epoch 结束后清空一次梯度。

这是因为在每个 mini-batch 中,模型参数的梯度是根据当前 mini-batch 的损失计算得到的,如果不在每个 mini-batch 后清空梯度,梯度会在每个 mini-batch 中累积,导致参数更新不准确。

因此,通常的做法是在每个 mini-batch 处理完成后调用优化器的 .zero_grad() 方法来清空梯度,以便接收下一个 mini-batch 的梯度信息。

在训练过程中,一个 epoch 包含多个 mini-batches,完成一个 epoch 后,模型会遍历整个训练数据集一次。在每个 epoch 开始时,一般会打乱数据集的顺序以增加模型的泛化能力。

.zero_grad()方法

.zero_grad() 是优化器对象的方法,用于将所有参数的梯度清零。

在每次进行反向传播之前,通常会调用 .zero_grad() 方法来清空之前累积的梯度信息,以准备接收新一轮的梯度信息。这样做可以确保每次参数更新只基于当前批次的梯度,而不受之前批次梯度的影响。

相关推荐
白熊18822 分钟前
【计算机视觉】CV实战项目 - 基于YOLOv5的人脸检测与关键点定位系统深度解析
人工智能·yolo·计算机视觉
nenchoumi311924 分钟前
VLA 论文精读(十六)FP3: A 3D Foundation Policy for Robotic Manipulation
论文阅读·人工智能·笔记·学习·vln
后端小肥肠34 分钟前
文案号搞钱潜规则:日入四位数的Coze工作流我跑通了
人工智能·coze
LCHub低代码社区35 分钟前
钧瓷产业原始创新的许昌共识:技术破壁·产业再造·生态重构(一)
大数据·人工智能·维格云·ai智能体·ai自动化·大禹智库·钧瓷码
-曾牛36 分钟前
Spring AI 快速入门:从环境搭建到核心组件集成
java·人工智能·spring·ai·大模型·spring ai·开发环境搭建
阿川201539 分钟前
云智融合普惠大模型AI,政务服务重构数智化路径
人工智能·华为云·政务·deepseek
自由鬼1 小时前
开源AI开发工具:OpenAI Codex CLI
人工智能·ai·开源·软件构建·开源软件·个人开发
生信碱移1 小时前
大语言模型时代,单细胞注释也需要集思广益(mLLMCelltype)
人工智能·经验分享·深度学习·语言模型·自然语言处理·数据挖掘·数据可视化
一个数据大开发1 小时前
解读《数据资产质量评估实施规则》:企业数据资产认证落地的关键指南
大数据·数据库·人工智能
云卓SKYDROID2 小时前
无人机环境适应性与稳定性技术要点!
人工智能·无人机·科普·高科技·云卓科技