梯度:般在神经网络里面是一个batch清空一次梯度还是一个epoch清空一次梯度?

通常,在神经网络训练中,是在每个 mini-batch 处理完成后清空一次梯度,而不是在每个 epoch 结束后清空一次梯度。

这是因为在每个 mini-batch 中,模型参数的梯度是根据当前 mini-batch 的损失计算得到的,如果不在每个 mini-batch 后清空梯度,梯度会在每个 mini-batch 中累积,导致参数更新不准确。

因此,通常的做法是在每个 mini-batch 处理完成后调用优化器的 .zero_grad() 方法来清空梯度,以便接收下一个 mini-batch 的梯度信息。

在训练过程中,一个 epoch 包含多个 mini-batches,完成一个 epoch 后,模型会遍历整个训练数据集一次。在每个 epoch 开始时,一般会打乱数据集的顺序以增加模型的泛化能力。

.zero_grad()方法

.zero_grad() 是优化器对象的方法,用于将所有参数的梯度清零。

在每次进行反向传播之前,通常会调用 .zero_grad() 方法来清空之前累积的梯度信息,以准备接收新一轮的梯度信息。这样做可以确保每次参数更新只基于当前批次的梯度,而不受之前批次梯度的影响。

相关推荐
振鹏Dong2 小时前
依托 <AI 原生应用架构白皮书>,看 AI 原生应用的发展与实践
人工智能
智行众维3 小时前
自动驾驶的“虚拟驾校”如何炼成?
人工智能·自动驾驶·汽车·智能驾驶·智能网联汽车·智能驾驶仿真测试·智驾系统
空白到白3 小时前
NLP-注意力机制
人工智能·自然语言处理
大千AI助手5 小时前
指数分布:从理论到机器学习应用
人工智能·机器学习·参数估计·概率密度函数·mle·指数分布·累积分布函数
MATLAB代码顾问5 小时前
MATLAB绘制多种混沌系统
人工智能·算法·matlab
搬砖的小码农_Sky5 小时前
人形机器人:Tesla Optimus的AI集成细节
人工智能·ai·机器人
做运维的阿瑞5 小时前
2025 年度国产大模型「开源 vs. 闭源」深度评测与实战指南
人工智能·低代码·开源
渡我白衣5 小时前
深度学习入门(三)——优化算法与实战技巧
人工智能·深度学习
可触的未来,发芽的智生5 小时前
触摸未来2025.10.10:记忆的种子,当神经网络拥有了临时工作区,小名喜忆记系统
人工智能·python·神经网络·机器学习·架构
极客BIM工作室5 小时前
演化搜索与群集智能:五种经典算法探秘
人工智能·算法·机器学习