机器学习模型:决策树笔记

第一章:决策树原理 1-决策树算法概述_哔哩哔哩_bilibili

根节点的选择应该用哪个特征?接下来选什么?如何切分?

决策树判断顺序比较重要。可以使用信息增益、信息增益率、

在划分数据集前后信息发生的变化称为信息增益,获得信息增益最高的特征就是最好的选择。集合信息的度量方式称为香农熵,或者简称熵。

常用的决策树算法

连续值应该怎么分?

排序之后二分。

决策树剪枝策略。

决策树有过拟合的风险,理论上可以完全分得开数据(如果树足够庞大,每个叶子节点就一个数据)

剪枝策略

预剪枝:边建立决策树边进行剪枝的操作(更实用)。

限制深度;叶子节点个数;叶子节点样本数;信息增益量等。

后剪枝:当建立完决策树后进行剪枝操作(用的不多)。

相关推荐
湫ccc9 分钟前
《Opencv》基础操作详解(3)
人工智能·opencv·计算机视觉
Jack_pirate19 分钟前
深度学习中的特征到底是什么?
人工智能·深度学习
微凉的衣柜33 分钟前
微软在AI时代的战略布局和挑战
人工智能·深度学习·microsoft
GocNeverGiveUp1 小时前
机器学习1-简单神经网络
人工智能·机器学习
Schwertlilien1 小时前
图像处理-Ch2-空间域的图像增强
人工智能
智慧化智能化数字化方案1 小时前
深入解读数据资产化实践指南(2024年)
大数据·人工智能·数据资产管理·数据资产入表·数据资产化实践指南
哦哦~9212 小时前
深度学习驱动的油气开发技术与应用
大数据·人工智能·深度学习·学习
智慧化智能化数字化方案2 小时前
120页PPT讲解ChatGPT如何与财务数字化转型的业财融合
人工智能·chatgpt
矩阵推荐官hy147622 小时前
短视频矩阵系统种类繁多,应该如何对比选择?
人工智能·python·矩阵·流量运营
lshzdq2 小时前
【机器人】机械臂轨迹和转矩控制对比
人工智能·算法·机器人