机器学习模型:决策树笔记

第一章:决策树原理 1-决策树算法概述_哔哩哔哩_bilibili

根节点的选择应该用哪个特征?接下来选什么?如何切分?

决策树判断顺序比较重要。可以使用信息增益、信息增益率、

在划分数据集前后信息发生的变化称为信息增益,获得信息增益最高的特征就是最好的选择。集合信息的度量方式称为香农熵,或者简称熵。

常用的决策树算法

连续值应该怎么分?

排序之后二分。

决策树剪枝策略。

决策树有过拟合的风险,理论上可以完全分得开数据(如果树足够庞大,每个叶子节点就一个数据)

剪枝策略

预剪枝:边建立决策树边进行剪枝的操作(更实用)。

限制深度;叶子节点个数;叶子节点样本数;信息增益量等。

后剪枝:当建立完决策树后进行剪枝操作(用的不多)。

相关推荐
荼蘼4 分钟前
迁移学习实战:基于 ResNet18 的食物分类
机器学习·分类·迁移学习
和鲸社区25 分钟前
《斯坦福CS336》作业1开源,从0手搓大模型|代码复现+免环境配置
人工智能·python·深度学习·计算机视觉·语言模型·自然语言处理·nlp
fanstuck27 分钟前
2025 年高教社杯全国大学生数学建模竞赛C 题 NIPT 的时点选择与胎儿的异常判定详解(一)
人工智能·目标检测·数学建模·数据挖掘·aigc
cxr82828 分钟前
Claude Code PM 深度实战指南:AI驱动的GitHub项目管理与并行协作
人工智能·驱动开发·github
THMAIL1 小时前
深度学习从入门到精通 - LSTM与GRU深度剖析:破解长序列记忆遗忘困境
人工智能·python·深度学习·算法·机器学习·逻辑回归·lstm
Gyoku Mint1 小时前
NLP×第六卷:她给记忆加了筛子——LSTM与GRU的贴靠机制
人工智能·深度学习·神经网络·语言模型·自然语言处理·gru·lstm
悠哉悠哉愿意1 小时前
【数学建模学习笔记】机器学习分类:随机森林分类
学习·机器学习·数学建模
玉木子2 小时前
机器学习(七)决策树-分类
决策树·机器学习·分类
YF云飞2 小时前
数据仓库进化:Agent驱动数智化新范式
数据仓库·人工智能·ai
悠哉悠哉愿意2 小时前
【数学建模学习笔记】机器学习分类:KNN分类
学习·机器学习·数学建模