机器学习模型:决策树笔记

第一章:决策树原理 1-决策树算法概述_哔哩哔哩_bilibili

根节点的选择应该用哪个特征?接下来选什么?如何切分?

决策树判断顺序比较重要。可以使用信息增益、信息增益率、

在划分数据集前后信息发生的变化称为信息增益,获得信息增益最高的特征就是最好的选择。集合信息的度量方式称为香农熵,或者简称熵。

常用的决策树算法

连续值应该怎么分?

排序之后二分。

决策树剪枝策略。

决策树有过拟合的风险,理论上可以完全分得开数据(如果树足够庞大,每个叶子节点就一个数据)

剪枝策略

预剪枝:边建立决策树边进行剪枝的操作(更实用)。

限制深度;叶子节点个数;叶子节点样本数;信息增益量等。

后剪枝:当建立完决策树后进行剪枝操作(用的不多)。

相关推荐
SUPER52663 小时前
本地开发环境_spring-ai项目启动异常
java·人工智能·spring
上进小菜猪7 小时前
基于 YOLOv8 的智能车牌定位检测系统设计与实现—从模型训练到 PyQt 可视化落地的完整实战方案
人工智能
AI浩8 小时前
UNIV:红外与可见光模态的统一基础模型
人工智能·深度学习
GitCode官方8 小时前
SGLang AI 金融 π 对(杭州站)回顾:大模型推理的工程实践全景
人工智能·金融·sglang
木头左8 小时前
LSTM模型入参有效性验证基于量化交易策略回测的方法学实践
人工智能·rnn·lstm
找方案8 小时前
我的 all-in-rag 学习笔记:文本分块 ——RAG 系统的 “信息切菜术“
人工智能·笔记·all-in-rag
亚马逊云开发者8 小时前
让 AI 工作空间更智能:Amazon Quick Suite 集成博查搜索实践
人工智能
腾讯WeTest8 小时前
「低成本、高质高效」WeTest AI翻译限时免费
人工智能
Lucas555555559 小时前
现代C++四十不惑:AI时代系统软件的基石与新征程
开发语言·c++·人工智能
言之。9 小时前
Claude Code 专业教学文档
人工智能