经典文献阅读之--SurroundOcc(自动驾驶的环视三维占据栅格预测)

0. 简介

环视BEV已经是很多场景中需要的功能,也是视觉代替激光雷达的有效解决方案,而《SurroundOcc: Multi-camera 3D Occupancy Prediction for Autonomous Driving》一吻则代表了这个领域的SOTA算法,文中通过多帧点云构建了稠密占据栅格数据集,并设计了基于transformer的2D-3D Unet结构的三维占据栅格网络。同时也开源立相关的算法,并可以在Github中找到。

1. 主要贡献

文中提出了一种SurroundOcc方法,旨在通过多摄像头图像输入来预测密集和准确的三维占据情况

  1. 我们首先使用一个二维骨干网络从每个图像中提取多尺度特征图。然后,我们执行二维-三维空间注意力,将多摄像头图像信息提升到三维体积特征而不是BEV特征
  2. 然后,我们使用三维卷积网络逐步上采样低分辨率体积特征,并将其与高分辨率特征融合,以获得细粒度的三维表示。在每个级别上,我们使用衰减加权损失来监督网络。
  3. 为了避免昂贵的占据注释,我们设计了一个流程,只使用现有的三维检测和三维语义分割标签生成密集的占据真值。具体而言,我们首先分别组合动态物体和静态场景的多帧点云。然后,我们利用Poisson重建[24]算法进一步填补空洞。最后,我们使用NN和体素化来获得密集的三维占据标签。有了密集的占据真值,我们训练模型并在nuScenes [7]数据集上与其他最先进的方法进行比较。定量结果和可视化结果都证明了我们方法的有效性。

2. 整体流程

2.1 问题阐述

2.2 概述

图2. 提出方法的流程。首先,我们使用骨干网络提取多摄像头图像的多尺度特征。然后,我们采用2D-3D空间注意力来融合多摄像头信息,并以多尺度方式构建3D体积特征。最后,使用3D反卷积层对3D体积进行上采样,并在每个层级上进行占据预测的监督

2.32D-3D空间注意力

许多3D场景重建方法[8, 37]通过将多视角2D特征重新投影到已知姿态的3D体积中,将2D特征整合到3D空间中。网格特征通过简单地对该网格中的所有2D特征进行平均计算得到。然而,这种方法假设不同视角对3D体积的贡献相等,这并不总是成立,特别是当一些视角被遮挡或模糊时。

图3. 基于3D和BEV的交叉视图注意力的比较。基于3D的注意力可以更好地保留3D信息。对于每个3D体积查询,我们将其投影到相应的2D视图中进行特征采样

点击经典文献阅读之--SurroundOcc(自动驾驶的环视三维占据栅格预测) - 古月居查看全文

相关推荐
xian_wwq10 分钟前
【学习笔记】基于人工智能的火电机组全局性能一体化优化研究
人工智能·笔记·学习·火电
B站计算机毕业设计之家13 分钟前
基于大数据热门旅游景点数据分析可视化平台 数据大屏 Flask框架 Echarts可视化大屏
大数据·爬虫·python·机器学习·数据分析·spark·旅游
最晚的py19 分钟前
ID3,C4.5,CART对比
决策树·机器学习
春风LiuK22 分钟前
虚实无界:VRAR如何重塑课堂与突破研究边界
人工智能·程序人生
歌_顿1 小时前
Embedding 模型word2vec/glove/fasttext/elmo/doc2vec/infersent学习总结
人工智能·算法
胡萝卜3.01 小时前
深入C++可调用对象:从function包装到bind参数适配的技术实现
开发语言·c++·人工智能·机器学习·bind·function·包装器
Echo_NGC22371 小时前
【KL 散度】深入理解 Kullback-Leibler Divergence:AI 如何衡量“像不像”的问题
人工智能·算法·机器学习·散度·kl
愤怒的可乐1 小时前
从零构建大模型智能体:OpenAI Function Calling智能体实战
人工智能·大模型·智能体
XiaoMu_0011 小时前
基于深度学习的农作物叶片病害智能识别与防治系统
人工智能·深度学习
potato_15541 小时前
Windows11系统安装Isaac Sim和Isaac Lab记录
人工智能·学习·isaac sim·isaac lab